【題目】“十一”黃金周期間,南陽動物園在7天假期中每天游客的人數(shù)變化如下表:(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
(1)若9月30日的游客人數(shù)記為a萬人,請用含a的代數(shù)式表示10月2日的游客人數(shù);
(2)請判斷7天內(nèi)游客人數(shù)最多的是哪天?
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元,問黃金周期間南陽動物園門票收入是多少元?
【答案】(1)a+2.4(萬人);(2)10月3日游客人數(shù)最多,理由見解析(3)272(萬元)
【解析】
(1)9月30日的游客人數(shù)為a萬人,10月1日的游客人數(shù)是(a+1.6萬),10月2日的游客人數(shù)是(a+1.6+0.8)萬人.
(2)用含a的代數(shù)式表示出每天的游客人數(shù),然后比較得到那天的游客人數(shù)最多.
(3)每天人數(shù)求和,先計算出游客總數(shù),再計算黃金周南陽動物園的門票收入.
(1)由題意得10月2日的旅游人數(shù):
a+1.6+0.8=a+2.4(萬人);
(2)10月3日游客人數(shù)最多.
理由:七天內(nèi)游客人數(shù)分別是(單位:萬人)
10月1日:a+1.6,
10月2日:a+2.4,
10月3日:a+2.8,
10月4日:a+2.4,
10月5日:a+1.6,
10月6日:a+1.8,
10月7日:a+0.6.
因為a+2.8最大,所以10月3日游客人數(shù)最多.
(3)七天游客總?cè)藬?shù)為:
(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)
=7a+13.2
當a=2時,
原式=27.2(萬人).
∴黃金周期間該公園門票收人是27.2×10=272(萬元)
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P的坐標為(1,3),把點P繞坐標原點O逆時針旋轉(zhuǎn)90°后得到點Q.
(1)寫出點Q的坐標是________;
(2)若把點Q向右平移個單位長度,向下平移個單位長度后,得到的點落在第四象限,求的取值范圍;
(3)在(2)條件下,當取何值,代數(shù)式取得最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,點從點出發(fā)沿射線移動,同時,點從點出發(fā)沿線段的延長線移動,已知點、的移動速度相同,與直線相交于點.
(1)如圖1,當點在線段上時,過點作的平行線交于點,連接、,求證:點是的中點;
(2)如圖2,過點作直線的垂線,垂足為,當點、在移動過程中,線段、、有何數(shù)量關系?請直接寫出你的結(jié)論: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形ABC三邊的長分別為AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整數(shù).以AB、AC、BC為邊分別向外畫正方形,面積分別為S1、S2、S3,那么S1、S2、S3之間的數(shù)量關系為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有4個三角形,第②個圖案中有6個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為( )
A. 12 B. 14 C. 16 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB∥CD,猜想∠BPD與∠B.∠D的關系,說明理由.(提示:三角形的內(nèi)角和等于180°)
①填空或填寫理由
解:猜想∠BPD+∠B+∠D=360°
理由:過點P作EF∥AB,
∴∠B+∠BPE=180°______
∵AB∥CD,EF∥AB,
∴______∥_____,(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∴∠EPD+______=180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
②依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B.∠D的關系,并說明理由.
③觀察圖(3)和(4),已知AB∥CD,直接寫出圖中的∠BPD與∠B.∠D的關系,不說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2018個等腰直角三角形的斜邊長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(-2,5),B(-3,3),C(1,2),點P(m,n)是三角形ABC內(nèi)任意一點,三角形經(jīng)過平移后得到三角形A1B1C1,點P的對應點為P1(m+6,n-2).
(1)直接寫出平移后點A1、B1、C1的坐標分別為 .
(2)畫出三角形ABC平移后的三角形A1B1C1..
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=4,∠ABC=67.5°,△ABD和△ABC關于AB所在的直線對稱,點M為邊AC上的一個動點(重合),點M關于AB所在直線的對稱點為N,△CMN的面積為S.
(1)求∠CAD的度數(shù);
(2)設CM=x,求S與x的函數(shù)表達式,并求x為何值時S的值最大?
(3)S的值最大時,過點C作EC⊥AC交AB的延長線于點E,連接EN(如圖2),P為線段EN上一點,Q為平面內(nèi)一點,當以M,N,P,Q為頂點的四邊形是菱形時,請直接寫出所有滿足條件NP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com