【題目】已知拋物線y=ax2+bx+c與x軸交于點A(1,0),B(3,0),且過點C(0,-3).
(1)求拋物線的解析式和頂點坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在直線y=-x上,并寫出平移后拋物線的解析式.
【答案】(1) y=-x2+4x-3=-(x-2)2+1,頂點坐標(biāo)為(2,1).(2)答案見解析.
【解析】試題分析:(1)利用交點式得出y=a(x-1)(x-3),進(jìn)而得出a的值,再利用配方法求出頂點坐標(biāo)即可;
(2)根據(jù)左加右減得出拋物線的解析式為y=-x2,進(jìn)而得出答案.
試題解析:(1)∵拋物線與x軸交于點A(1,0),B(3,0),
可設(shè)拋物線解析式為y=a(x-1)(x-3),
把C(0,-3)代入得:3a=-3,
解得:a=-1,
故拋物線解析式為y=-(x-1)(x-3),
即y=-x2+4x-3,
∵y=-x2+4x-3=-(x-2)2+1,
∴頂點坐標(biāo)(2,1);
(2)先向左平移2個單位,再向下平移1個單位,得到的拋物線的解析式為y=-x2,平移后拋物線的頂點為(0,0)落在直線y=-x上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)
已知關(guān)于x的一元二次方程x2–(m–3)x–m=0,
(1)求證:方程有兩個不相等的實數(shù)根;
(2)如果方程的兩實根分別為x1、x2,且x12+x22–x1x2=7,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,將小旗ACDB放于平面直角坐標(biāo)系中,得到各頂點的坐標(biāo)為A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以點B為旋轉(zhuǎn)中心,在平面直角坐標(biāo)系內(nèi)將小旗順時針旋轉(zhuǎn)90°.
(1)畫出旋轉(zhuǎn)后的小旗A′C′D′B′;
(2)寫出點A′,C′,D′的坐標(biāo);
(3)求出線段BA旋轉(zhuǎn)到B′A′時所掃過的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖1,△ABC是邊長為4cm的等邊三角形,邊AB在射線OM上,且OA=6cm,點D從O點出發(fā),沿OM的方向以1cm/s的速度運動,當(dāng)D不與點A重合時,將△ACD繞點C逆時針方向旋轉(zhuǎn)60°得到△BCE,連結(jié)DE.
(1)求證:△CDE是等邊三角形;
(2)如圖2,當(dāng)6<t<10時,△BDE的周長是否存在最小值?若存在,求出△BDE的最小周長;若不存在,請說明理由;
(3)如圖3,當(dāng)點D在射線OM上運動時,是否存在以D、E、B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果拋物線y=-x2+bx+c經(jīng)過A(0,-2),B(-1,1)兩點,那么此拋物線經(jīng)過
A. 第一、二、三、四象限 B. 第一、二、三象限
C. 第一、二、四象限 D. 第二、三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數(shù)根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求出以此兩根為邊長的直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=ax+b (a ,b為常數(shù)且a≠0)滿足下表:
x | -2 | -1 | 0 | 1 | 2 | 3 |
y | 6 | 4 | 2 | 0 | -2 | -4 |
則方程ax+b=0的解是( )
A. x=l B. x=-1 C. x=2 D. x=3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com