【題目】如圖,已知△ABC中,AC=BC,點D、E、F分別是線段AC、BC、AD的中點,BF、ED的延長線交于點G,連接GC.
(1)求證:AB=GD;
(2)當CG=EG時,且AB=2,求CE.
【答案】(1)見解析;(2)CE=.
【解析】
(1)根據(jù)三角形中位線定理得到DE∥AB,AB=2DE,根據(jù)平行線的性質(zhì)得到∠ABF=∠DGF,證明△ABF≌△DGF,根據(jù)全等三角形的性質(zhì)證明結(jié)論;
(2)證明△GEC∽△CBA,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.
解:∵D,E是AC,BC的中點,
∴DE為△ABC的中位線,
∴DE∥AB,AB=2DE,
∴∠ABF=∠DGF,
∵F為AD中點,
∴AF=DF,
在△ABF和△DGF中,
∴△ABF≌△DGF(AAS),
∴AB=GD;
(2)∵AB=2,
∴CD=2,DE=1,
∴GE=3,
∵CA=CB,
∴∠CAB=∠CBA,
∵CG=EG,
∴∠GEC=∠GCE,
∵DE∥AB,
∴∠GEC=∠CBA,
∴△GEC∽△CBA,
設(shè)CE=x,
則BC=2x,
∴,即,
解得:,(負值舍去)
∴CE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵市民節(jié)約用電,某市對居民用電實行“階梯收費”(總電費=第一階梯電費+第二階梯電費).規(guī)定:用電量不超過200度按第一階梯電價收費,超過200度的部分按第二階梯電價收費.如圖是張磊家2018年1月和3月所交電費的收據(jù),則該市規(guī)定的第一階梯電價和第二階梯電價分別為每度( 。
A. 0.5元、0.6元 B. 0.4元、0.5元 C. 0.3元、0.4元 D. 0.6元、0.7元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當 AB 與 AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“綠滿重慶”行動中,江北區(qū)種植了大量的小葉榕和銀杏樹,根據(jù)林業(yè)專家的分析,樹葉在進行光合作用后產(chǎn)生的分泌物能在空氣中吸附懸浮顆粒,這樣就達到了滯塵凈化空氣的作用.
(1)若某小區(qū)今年要種植銀杏樹和小葉榕共450株,且銀杏樹的數(shù)量不超過小葉榕數(shù)量的2倍,求今年該小區(qū)小葉榕至少種植多少株?
(2)已知每一片銀杏樹葉一年平均滯塵量為,一株銀杏樹去年有3500片樹葉,冬季樹葉全部掉落后,今年新長出了樹葉,且這株銀杏今年的滯塵量是去年滯塵量的1.1倍還多.已知每片小葉榕樹葉的滯塵量比銀杏樹葉多,一株小葉榕今年的樹葉總量比今年的這株銀杏要少,明年這株小葉榕樹葉將在今年的基礎(chǔ)上掉落,但又會新長出1000片樹葉,若今明兩年這株小葉榕共滯塵量為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號召,幸福商場用3300元購進甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進價、售價如下表:
進價(元/只) | 售價(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進了多少只?
(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AE,CF
(1)如圖1,求證:AE=CF;
(2)如圖2,若A,E,O三點共線,求點F到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個單位,得到矩形A1B1C1D1,第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個單位,得到矩形A2B2C2D2…,第n次平移將矩形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向平移5個單位,得到矩形AnBnCnDn(n>2).
(1)求AB1和AB2的長.
(2)若ABn的長為56,求n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com