【題目】△ABC中,點O是AC邊上一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于E,交∠DCA的平分線于點F.
(1)求證:EO=FO;
(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
【答案】(1)證明見解析;(2)(2)當點O運動到AC中點時,四邊形AECF是矩形;理由見解析.
【解析】試題分析:(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行線的性質有∠1=∠3,等量代換有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可證四邊形AECF是平行四邊形,又CE、CF分別是∠BCA及其外角的角平分線,易證∠ECF是90°,從而可證四邊形AECF是矩形.
(1)∵CE平分∠BCA,
∴∠1=∠2,
又∵MN∥BC,
∴∠1=∠3,
∴∠3=∠2,
∴EO=CO,
同理,FO=CO,
∴EO=FO;
(2)當點O運動到AC中點時,四邊形AECF是矩形;理由如下:如圖所示:
∵OA=OC,
∴四邊形AECF是平行四邊形,
∵CF是∠BCA的外角平分線,
∴∠4=∠5,
又∵∠1=∠2,
∴∠1+∠5=∠2+∠4,
又∵∠1+∠5+∠2+∠4=180°,
∴∠2+∠4=90°,
∴平行四邊形AECF是矩形.
科目:初中數學 來源: 題型:
【題目】等腰三角形的一個內角是50°,則另外兩個角的度數分別是( )
A.65°,65°
B.50°,80°
C.65°,65°或50°,80°
D.50°,50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.頂點在圓上的角是圓周角
B.兩邊都和圓相交的角是圓周角
C.圓心角是圓周角的2倍
D.圓周角度數等于它所對圓心角度數的一半
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一長方體形狀的物體,它的長,寬,高分別為a,b,c(a>b>c),有三種不同的捆扎方式(如圖所示的虛線).哪種方式用繩最少?哪種方式用繩最多?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果兩個圓心角相等,那么( )
A.這兩個圓心角所對的弦相等;
B.這兩個圓心角所對的弧相等
C.這兩個圓心角所對的弦的弦心距相等;
D.以上說法都不對
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com