【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點A順時針旋轉到①,可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,此時AP3=3+;…按此規(guī)律繼續(xù)旋轉,直到點P2020為止,則AP2020等于_______.
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是以MN為直徑,半徑為4的圓,P為以M為圓心、2為半徑的圓上一點,過點P作⊙M的切線交⊙O于點A.B,連MA,MB,則MA·MB為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+bx+c經過點A、B,C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一動點,過點P作y軸的平行線,交拋物線于點D,是否存在這樣的P點,使線段PD的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)如圖2,拋物線的頂點為E,EF⊥x軸于點F,N是直線EF上一動點,M(m,0)是x軸一個動點,請直接寫出CN+MN+MB的最小值以及此時點M、N的坐標,直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數的圖象與軸相交于點,與反比例函數的圖象相交于點,.
(1)求一次函數和反比例函數的解析式;
(2)根據圖象,直接寫出時,的取值范圍;
(3)在軸上是否存在點,使為等腰三角形,如果存在,請求點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC
(1)利用直尺和圓規(guī)完成如下操作,作∠BAC的平分線和AB的垂直平分線,交點為P(不寫作法,保留作圖瘕跡)
(2)連結PB,若∠ABC=65°,求∠ABP的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:拋物線與軸交于,兩點,與軸交于點,點為頂點,連接,,拋物線的對稱軸與軸交與點.
(1)求拋物線解析式及點的坐標;
(2)G是拋物線上,之間的一點,且,求出點坐標;
(3)在拋物線上,之間是否存在一點,過點作,交直線于點,使以,,為頂點的三角形與相似?若存在,求出滿足條件的點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次海上救援中,兩艘專業(yè)救助船同時收到某事故漁船的求救訊息,已知此時救助船在的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.
(1)求收到求救訊息時事故漁船與救助船之間的距離;
(2)若救助船A,分別以40海里/小時、30海里/小時的速度同時出發(fā),勻速直線前往事故漁船處搜救,試通過計算判斷哪艘船先到達.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點 A 逆時針旋轉得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點 PH,連結 AH,若 P 是 CH 的中點,則△APH 的周長為( )
A. 15 B. 18 C. 20 D. 24
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com