【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P 是 CH 的中點(diǎn),則△APH 的周長為( )
A. 15 B. 18 C. 20 D. 24
【答案】C
【解析】
連結(jié)AC,先由△AGH≌△ADH得到∠GHA=∠AHD,進(jìn)而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的長,然后由△HAC∽△ADC,根據(jù)=求出AH的長,再根據(jù)△HAC∽△HDA求出DH的長,進(jìn)而求得HP和AP的長,最后得到△APH的周長.
∵P是CH的中點(diǎn),PH=PC,∵AH=AH,AG=AD,且AGH與ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周長=AP+PH+AH=6.25+6.25+7.5=20.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年12月5日,備受關(guān)注的鄭州奧體中心“一場兩館”主體結(jié)構(gòu)已完成,裝飾裝修完成,據(jù)了解,鄭州奧體中心將作為2019年在鄭州市舉辦的第十一屆全國少數(shù)民族傳統(tǒng)體自運(yùn)動會主辦場地,包括“一場兩館”,即萬個(gè)座位的體育場、萬個(gè)座位的體育館和和座位的游泳館,圖1是裝飾現(xiàn)場一輛吊車的實(shí)物圖,圖2是其工作示意圖,是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)離地面的高度為當(dāng)起重臂長度為,張角為時(shí),求操作平臺離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1,此時(shí)AP1=2;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP2=2+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP3=3+;…按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2020為止,則AP2020等于_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為某景區(qū)五個(gè)景點(diǎn)A、B、C、D、E的平面示意圖,B、A在C的正東方向,D在C的正北方向,D和E均在B的北偏西18°方向上,E在A的西北方向上,C、D相距1000米,E在BD的中點(diǎn)處,求景點(diǎn)B、A之間的距離.(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin18°≈0.3;cos18°≈0.9;tan18°≈0.3;sin72°≈0.9;cos72°≈0.3;tan72°≈3.1;≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口在觀測站的正東方向處,某船從港口出發(fā),沿東偏北方向勻速航行2小時(shí)后到達(dá)處,此時(shí)從觀測站處測得該船位于北偏東的方向,求該船航行的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某建筑物AC上,掛著宣傳條幅BC,小明站在點(diǎn)F處,看條幅頂端B,測得仰角為30°,再往條幅方向前行30米到達(dá)點(diǎn)E處,看到條幅頂端B,測得仰角為60°,求宣傳條幅BC的長.(注:不計(jì)小明的身高,結(jié)果精確到1米,參考數(shù)據(jù)1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo);
(2)直接寫出△ABC的面積為 ;
(3)在x軸上畫點(diǎn)P,使PA+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:
x | … | - | 0 | 1 | 2 | … | |||
y | … | -1 | - | m | - | -1 | n | … |
則對于該函數(shù)的性質(zhì)的判斷:
①該二次函數(shù)有最大值;②不等式y(tǒng)>-1的解集是x<0或x>2;
③方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于-<x<0和2<x<之間;
④當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大;
其中正確的是:
A.②③B.②④C.①③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,M是斜邊AB的中點(diǎn),以CM為直徑作圓O交AC于點(diǎn)N,延長MN至D,使ND=MN,連接AD、CD,CD交圓O于點(diǎn)E.
(1)判斷四邊形AMCD的形狀,并說明理由;
(2)求證:ND=NE;
(3)若DE=2,EC=3,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com