【題目】某校九年級共500名學(xué)生參加法律知識測試,從中隨機抽取一部分試卷成績(得分取整數(shù))為樣本作統(tǒng)計分析,進行整理后分成五組,并繪制成頻數(shù)分布直方圖(見圖)請結(jié)合直方圖提供的信息,解答以下問題:

1)隨機抽取了多少名學(xué)生的測試成績?

270.580.5這一分數(shù)段的頻率是多少?

3)若90分以上(不含90分)定為優(yōu)秀,樣本中的優(yōu)秀率是多少?

4)請估計出該校九年級這次法律知識測試獲得優(yōu)秀的大約有多少人?

【答案】150;(20.24;(312%;(460

【解析】

1)根據(jù)題意,將各個分數(shù)段的學(xué)員數(shù)量相加即可;

2)根據(jù)題意可知70.580.5這一分數(shù)段的學(xué)員人數(shù)為12名,由此進一步計算即可;

(3)根據(jù)題意可知樣本中的優(yōu)秀人數(shù)為6名,由此進一步計算即可;

(4)結(jié)合(3)中樣本的優(yōu)秀率進一步計算即可.

(1)(名),

答:隨機抽取了50名學(xué)生的測試成績;

(2),

答:70.580.5這一分數(shù)段的頻率是0.24;

(3)由題意得:樣本中的優(yōu)秀人數(shù)為6名,

∴優(yōu)秀率為:,

答:樣本中的優(yōu)秀率是;

(4)(名)

答:該校約有60人獲得優(yōu)秀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b經(jīng)過點A-5,0),B-1,4

1)求直線AB的表達式;

2)求直線CEy=-2x-4與直線ABy軸圍成圖形的面積;

3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b-2x-4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根直立的旗桿長8 m,一陣大風(fēng)吹過,旗桿從C點處折斷,頂部(B)著地,離桿腳(A)4 m,如圖,工人在修復(fù)的過程中,發(fā)現(xiàn)在折斷點C的下面1.25 mD處,有一明顯傷痕.若下次大風(fēng)將旗桿從D處刮斷,則桿腳周圍多大范圍內(nèi)有被砸傷的危險?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠BAC90°,∠ABC45°,ABAC,點D為直線BC上一動點(D不與B,C重合),以AD為邊作正方形ADEF,連接CF

(1)觀察猜想

如圖1,當(dāng)點D在線段BC上時可以證明△ABD≌△ACF,則

①BCCF的位置關(guān)系為: ;

②BCDC,CF之間的數(shù)量關(guān)系為:

(2)類比探究

如圖2,當(dāng)點D在線段BC的延長線上時,其他條件不變,(1),結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

(3)拓展延伸

如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側(cè),其他條件不變.

①BCDC,CF之間的數(shù)量關(guān)系為:

若正方形ADEF的邊長為2,對角線AEDF相交于點O,連接OC,則OC的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鄭老師想為希望小學(xué)四年(3)班的同學(xué)購買學(xué)習(xí)用品,了解到某商店每個書包的價格比每本詞典多8元,用124元恰好可以買到3個書包和2本詞典.

1)每個書包和每本詞典的價格各是多少元?

2)鄭老師有1000元,他計劃為全班40位同學(xué)每人購買一件學(xué)習(xí)用品(一個書包或一本詞典)后,余下不少于100元且不超過120元的錢購買體育用品,共有哪幾種購買書包和詞典的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點,AC與DE交于P點,以直線BC為x軸,點E為原點建立直角坐標(biāo)系.

(1)求△ABC與△DEF的頂點坐標(biāo);

(2)判斷△PEC的形狀;

(3)求△PEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB和∠COD的兩邊分別互相垂直,且∠COD比∠AOB3倍少60°,則∠COD的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩個全等的等邊三角形△ABC和△ACD拼成菱形ABCD.把一個含60°角的三角尺與這個菱形疊合,使三角尺的60°角的頂點與點A重合,兩邊分別與ABAC重合.將三角尺繞點A按逆時針方向旋轉(zhuǎn).

1)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD相交于點E,F時,(如圖1),通過觀察或測量BE,CF的長度,你能得出什么結(jié)論并證明你的結(jié)論;

2)當(dāng)三角尺的兩邊分別與菱形的兩邊BC,CD的延長線相交于點E,F時(如圖2),你在(1)中得到的結(jié)論還成立嗎?簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案