【題目】如圖,A,P,B,C是圓上的四個(gè)點(diǎn),∠APC=∠CPB=60°,AP,CB的延長線相交于點(diǎn)D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.

【答案】
(1)證明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,

∴∠ABC=∠BAC=60°,

∴△ABC是等邊三角形


(2)解:∵△ABC是等邊三角形,AB=2 ,

∴AC=BC=AB=2 ,∠ACB=60°.

在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2 ,

∴AP= =2.

在Rt△DAC中,∠DAC=90°,AC=2 ,∠ACD=60°,

∴AD=ACtan∠ACD=6.

∴PD=AD﹣AP=6﹣2=4


【解析】(1)由圓周角定理可知∠ABC=∠BAC=60°,從而可證得△ABC是等邊三角形;(2)由△ABC是等邊三角形可得出“AC=BC=AB=2 ,∠ACB=60°”,在直角三角形PAC和DAC通過特殊角的正、余切值即可求出線段AP、AD的長度,二者作差即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時(shí),延長BE交AD于點(diǎn)F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點(diǎn)時(shí),請直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018120日,山西迎來了復(fù)興號列車,與和諧號相比,復(fù)興號列車時(shí)速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復(fù)興號”G92次列車平均每小時(shí)比某列和諧號列車多行駛40千米,其行駛時(shí)間是該列和諧號列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外).經(jīng)查詢,復(fù)興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復(fù)興號”G92次列車從太原南到北京西需要多長時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),D(6,4),將線段AD平移得到BC,使B(0,b),且a,b滿足|a﹣2|+=0,延長BCx軸于點(diǎn)E.

(1)填空:點(diǎn)A(   ,   ),點(diǎn)B(   ,   ),∠DAE=   

(2)求點(diǎn)C和點(diǎn)E的坐標(biāo);

(3)設(shè)點(diǎn)Px軸上的一動點(diǎn)(不與點(diǎn)A、E重合),且PA>AE,探究∠APC∠PCB的數(shù)量關(guān)系?寫出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點(diǎn)到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時(shí)木板到地面的距離.(供選用數(shù)據(jù): ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙兩個(gè)小組進(jìn)入決賽,評委從研究報(bào)告、小組展示、答辯三個(gè)方面為各小組打分,各項(xiàng)成績均按百分制記錄.甲、乙兩個(gè)小組各項(xiàng)得分如下表:

小組

研究報(bào)告

小組展示

答辯

91

80

78

79

83

90

(1)計(jì)算各小組的平均成績,并從高分到低分確定小組的排名順序;

(2)如果研究報(bào)告、小組展示、答辯按照4:3:3計(jì)算成績,哪個(gè)小組的成績最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案