【題目】如圖,鉛球運(yùn)動(dòng)員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=﹣ x2+ x+ ,則該運(yùn)動(dòng)員此次擲鉛球的成績(jī)是( )
A.6m
B.12m
C.8m
D.10m
【答案】D
【解析】解:把y=0代入y=﹣ x2+ x+ 得:
﹣ x2+ x+ =0,
解之得:x1=10,x2=﹣2.
又x>0,解得x=10.
所以答案是:D.
【考點(diǎn)精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點(diǎn),需要了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為16,BC=8,現(xiàn)將△ABC沿直線向右平移a(a<8)個(gè)單位到△DEF的位置.
(1)求△ABC的BC邊上的高.
(2)連結(jié)AE、AD,設(shè)AB=5
①求線段DF的長(zhǎng).
②當(dāng)△ADE是等腰三角形時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店計(jì)劃購(gòu)進(jìn)一批新的花束以滿足市場(chǎng)需求,三款不同品種的花束,進(jìn)價(jià)分別是A款180元/束,B款60元/束,C款120元/束。店鋪在經(jīng)銷中,A款花束可賺20元/束,B款花束可賺10元/束,C款花束可賺12元/束。
(1)若商場(chǎng)用6000元同時(shí)購(gòu)進(jìn)兩種不同款式的花束共40部,并恰好將錢用完,請(qǐng)你通過計(jì)算分析進(jìn)貨方案;
(2)在(1)的條件下,求盈利最多的進(jìn)貨方案;
(3)若該店鋪同時(shí)購(gòu)進(jìn)三款花束共20束,共用去1800元,問這次店鋪共有幾種可能的方案?利潤(rùn)最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點(diǎn)M,延長(zhǎng)ED到H使DH=BM,連接AM,AH,則以下四個(gè)結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量?jī)砂痘ハ嗥叫械囊欢魏拥膶挾,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.
(1)求∠CBA的度數(shù).
(2)求出這段河的寬(結(jié)果精確到1m,備用數(shù)據(jù) ≈1.41, ≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A為x軸負(fù)半軸上一點(diǎn),點(diǎn)B為x軸正半軸上一點(diǎn),C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.
(1)a=___,b=___,△BCD的面積為______;
(2)如圖2,若AC⊥BC,點(diǎn)P線段OC上一點(diǎn),連接BP,延長(zhǎng)BP交AC于點(diǎn)Q,當(dāng)∠CPQ=∠CQP時(shí),求證:BP平分∠ABC;
(3)如圖3,若AC⊥BC,點(diǎn)E是點(diǎn)A與點(diǎn)B之間一動(dòng)點(diǎn),連接CE,CB始終平分∠ECF,當(dāng)點(diǎn)E在點(diǎn)A與點(diǎn)B之間運(yùn)動(dòng)時(shí),的值是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場(chǎng)擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長(zhǎng)),已知計(jì)劃中的建筑材料可建圍墻的總長(zhǎng)為50m.設(shè)飼養(yǎng)室長(zhǎng)為x(m),占地面積為y(m2).
(1)如圖1,問飼養(yǎng)室長(zhǎng)x為多少時(shí),占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大,小敏說:“只要飼養(yǎng)室長(zhǎng)比(1)中的長(zhǎng)多2m就行了.”請(qǐng)你通過計(jì)算,判斷小敏的說法是否正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 的圖象與x軸交于A(﹣1.0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3),頂點(diǎn)為D.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和對(duì)稱軸.
(3)探究對(duì)稱軸上是否存在一點(diǎn)P,使得以點(diǎn)P、D、A為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠AGB=∠EHF,∠C=∠D.
求證:∠A=∠F.
證明:∵∠AGB=∠EHF
∠AGB=___________(對(duì)頂角相等)
∴∠EHF=∠DGF
∴DB∥EC(____________________________________)
∴∠_________=∠DBA(________________________________)
又∵∠C=∠D
∴∠DBA=∠D
∴DF∥_______(__________________________________)
∴∠A=∠F(__________________________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com