【題目】在平面直角坐標(biāo)系中,的頂點(diǎn) ,,于,交軸于點(diǎn)
(1)如圖①,求點(diǎn)的坐標(biāo);
(2)如圖②:將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得線段,連接,求點(diǎn)的坐標(biāo);
(3)如圖③, 點(diǎn)為軸正半軸上一動(dòng)點(diǎn), 點(diǎn)在第二象限內(nèi),于,且,過點(diǎn)作垂直軸于點(diǎn),求的值.
【答案】(1)點(diǎn)的坐標(biāo)為;(2)點(diǎn)的坐標(biāo)為;(3)1
【解析】
(1)根據(jù)得即可求出點(diǎn)C的坐標(biāo)
(2)過點(diǎn)作軸于,根據(jù)已知條件可得出OC=1,OB=3,只需要證明即可得到F的橫縱坐標(biāo)表示;
(3)根據(jù)已知條件可得四邊形為矩形,得出,,通過角度之間的相互轉(zhuǎn)化可證的,得到,再根據(jù)可得結(jié)果
解:(1)點(diǎn),的坐標(biāo)分別為 ,
于
,
點(diǎn)的坐標(biāo)為
點(diǎn)的坐標(biāo)為
(2)由(1)可知
點(diǎn)的坐標(biāo)為
過點(diǎn)作軸于
線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)后得線段,
,
,
點(diǎn)的坐標(biāo)為
(3)過點(diǎn)作延長(zhǎng)線于點(diǎn)
垂直軸于點(diǎn)
四邊形為矩形
,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知點(diǎn)A在x軸的正半軸上,且與原點(diǎn)的距離為3,拋物線y=ax2﹣4ax+3(a≠0)經(jīng)過點(diǎn)A,其頂點(diǎn)為C,直線y=1與y軸交于點(diǎn)B,與拋物線交于點(diǎn)D(在其對(duì)稱軸右側(cè)),聯(lián)結(jié)BC、CD.
(1)求拋物線的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是y軸的負(fù)半軸上的一點(diǎn),如果△PBC與△BCD相似,且相似比不為1,求點(diǎn)P的坐標(biāo);
(3)將∠CBD繞著點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),使射線BC經(jīng)過點(diǎn)A,另一邊與拋物線交于點(diǎn)E(點(diǎn)E在對(duì)稱軸的右側(cè)),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點(diǎn),BC⊥x軸于點(diǎn)C,若△OBC的面積為2,且A點(diǎn)的縱坐標(biāo)為4,B點(diǎn)的縱坐標(biāo)為1.
(1)求反比例函數(shù)、一次函數(shù)的表達(dá)式及直線AB與x軸交點(diǎn)E的坐標(biāo);
(2)已知點(diǎn)D(t,0)(t>0),過點(diǎn)D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點(diǎn)P,與反比函數(shù)上的圖像相交于點(diǎn)Q,若點(diǎn)P位于點(diǎn)Q的上方,請(qǐng)結(jié)合函數(shù)圖像直接寫出此時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,O為BD中點(diǎn),以BC為邊向正方形內(nèi)作等邊△BCE,連接AE并延長(zhǎng)交CD于F,連接BD分別交CE、AF于G、H,下列結(jié)論:①;②;③;④;⑤:,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 經(jīng)過點(diǎn),與軸相交于,兩點(diǎn),
(1)拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)在拋物線的對(duì)稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點(diǎn)恰好落在拋物線的對(duì)稱軸上,求點(diǎn)和點(diǎn)的坐標(biāo);
(3)設(shè)是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)為等邊三角形時(shí),求直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接.
(1)如圖1,求的度數(shù);
(2)如圖2,點(diǎn)分別為上一點(diǎn),并且,連接,交點(diǎn)為G,R為上一點(diǎn),連接與交于點(diǎn)H,,求證:;
(3)如圖3,在(2)的條件下,,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一款“雷達(dá)式”懶人椅.當(dāng)懶人椅完全展開時(shí),其側(cè)面示意圖如圖2所示,金屬桿AB、CD在點(diǎn)O處連接,且分別與金屬桿EF在點(diǎn)B,D處連接.金屬桿CD的OD部分可以伸縮(即OD的長(zhǎng)度可變).已知OA=50cm,OB=20cm,OC=30cm.DE=BF=5cm.當(dāng)把懶人椅完全疊合時(shí),金屬桿AB,CD,EF重合在一條直線上(如圖3所示),此時(shí)點(diǎn)E和點(diǎn)A重合.
(1)如圖2,已知∠BOD=6∠ODB,∠OBF=140°.
①求∠AOC的度數(shù).
②求點(diǎn)A,C之間的距離.
(2)如圖3,當(dāng)懶人椅完全疊合時(shí),求CF與CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某市中學(xué)生參加“科普知識(shí)”競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),作出如圖所示的統(tǒng)計(jì)圖和統(tǒng)計(jì)表.請(qǐng)根據(jù)圖表信息,解答下列問題:
(1)在表中:m= ,n= ;在圖中補(bǔ)全頻數(shù)分布直方圖;
(2)小明的成績(jī)是所有被抽查學(xué)生成績(jī)的中位數(shù),據(jù)此推斷他的成績(jī)?cè)?/span> 組;
(3)4個(gè)小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎(jiǎng)典禮,恰好抽中A、C兩組學(xué)生的概率是多少?請(qǐng)用列表法或畫樹狀圖法說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究請(qǐng)補(bǔ)充完整以下探索過程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接寫出________,________;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):
性質(zhì)1______________________________________________________
性質(zhì)2_______________________________________________________
(3)若方程有四個(gè)不同的實(shí)數(shù)根,請(qǐng)根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com