【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起其中,,;

,則的度數(shù)為______;

,求的度數(shù);

猜想的數(shù)量關(guān)系,并說明理由.

且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出角度所有可能的值不必說明理由,若不存在,請說明理由.

【答案】(1);40°;(2),理由見解析;(3)、、

【解析】

根據(jù)的度數(shù),求得的度數(shù),再根據(jù)求得的度數(shù);根據(jù)的度數(shù),求得的度數(shù),再根據(jù)求得的度數(shù);

根據(jù)以及,進行計算即可得出結(jié)論;

分五種情況進行討論:當時,當時,當時,當時,當時,分別求得角度.

故答案為:;

,

猜想:

理由如下:

;

、、、

理由:當時,;

時,;

時,;

時,;

時,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將△ABC的紙片按如圖所示的方式折疊,使點B落在邊AC上,記為點B′,折疊痕為EF,已知AB=AC=8,BC=10,若以點B′、F、C為頂點的三角形與△ABC相似,那么BF的長度是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。

A. 2, B. 4,3 C. 4, D. 2,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖拋物線y=ax2+bx+c,下列式子正確的是(
A.a+b+c<0
B.b2﹣4ac<0
C.c<2b
D.abc>0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,∠BAC的平分線ADBC于點D,DE垂直平分AC,垂足為點E,BAD=29°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條筆直的公路l穿過草原,公路邊有一消防站A,距離公路5 千米的地方有一居民點B,A、B的直線距離是10 千米.一天,居民點B著火,消防員受命欲前往救火.若消防車在公路上的最快速度是80千米/小時,而在草地上的最快速度是40千米/小時,則消防車在出發(fā)后最快經(jīng)過小時可到達居民點B.(友情提醒:消防車可從公路的任意位置進入草地行駛.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高天然氣使用效率,保障居民的本機用氣需求,某地積極推進階梯式氣價改革,若一戶居民的年用氣量不超過300m3,價格為2.5元/m3,若年用氣量超過300m3,超出部分的價格為3元/m3,

(1)根據(jù)題意,填寫下表:

(2)設(shè)一戶居民的年用氣量為xm3,付款金額為y元,求y關(guān)于x的解析式;

(3)若某戶居民一年使用天然氣所付的金額為870元,求該戶居民的年用氣量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:,OE平分,點A、B、C分別是射線OM、OE、ON上的動點B、C不與點O重合,連接AC交射線OE于點設(shè)

如圖1,若,則

的度數(shù)是______;

時,______;當時,______.

如圖2,若,則是否存在這樣的x的值,使得中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二 次操作;……依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形.如圖1,平行四邊形ABCD中,若AB=1,BC=2,則平行四 邊形ABCD為1階準菱形.

(I)判斷與推理:

(i)鄰邊長分別為2和3的平行四邊形是_________階準菱形;

(ii)為了剪去一個菱形,進行如下操作:如圖2,把平行四邊形ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F,得到四邊形ABFE,請證明四邊形ABFE是菱形.

)操作與計算:

已知平行四邊形ABCD的鄰邊長分別為l,a(a>1),且是3階準菱形,請畫出平行四邊形ABCD及裁剪線的示意圖,并在圖形下方寫出a的值.

查看答案和解析>>

同步練習冊答案