【題目】如圖,△ABC內(nèi)接于⊙O,過點(diǎn)B的切線BEAC,點(diǎn)P是優(yōu)弧AC上一動(dòng)點(diǎn)(不與A,C重合),連接PA,PBPC,PBACD

(1)求證:PB平分∠APC;

(2)當(dāng)PD3PB4時(shí),求AB的長.

【答案】(1)證明見解析;(2)AB=2.

【解析】

(1)根據(jù)切線的性質(zhì)和平行線的性質(zhì)證得∠BAC=∠ACB,得出,即可證得結(jié)論;

(2)通過證得△ABD∽△PBA,根據(jù)相似三角形的性質(zhì)即可求得.

(1)證明:∵BE是⊙O的切線,

∴∠EBC=∠BAC,

BEAC

∴∠EBC=∠ACB,

∴∠BAC=∠ACB

ABBC,

∴∠APB=∠CPB,

PB平分∠APC

(2)解:∵∠APB=∠CPB,∠BAD=∠CPB,

∴∠BAD=∠APB,

∵∠ABP=∠DBA,

∴△ABD∽△PBA,

,

AB2PBBDPB(PBPD)4×14,

AB2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,直線lAB兩點(diǎn),點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D軸于點(diǎn)C,交拋物線于點(diǎn)E

1)求拋物線的解析式;

2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫出Sx的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說明理由.

3)連接BE,是否存在點(diǎn)D,使得相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓市民享受到更多的優(yōu)惠,某市針對(duì)乘坐地鐵的人群進(jìn)行了調(diào)查.

(1)為獲得乘坐地鐵人群的月均花費(fèi)信息,下列調(diào)查方式中比較合理的是

A.對(duì)某小區(qū)的住戶進(jìn)行問卷調(diào)查

B.對(duì)某班的全體同學(xué)進(jìn)行問卷調(diào)查

C.在市里的不同地鐵站,對(duì)進(jìn)出地鐵的人進(jìn)行問卷調(diào)查

(2)調(diào)查小組隨機(jī)調(diào)查了該市1000人上一年乘坐地鐵的月均花費(fèi)(單位:元),繪制了頻數(shù)分布直方圖,如圖所示.

① 根據(jù)圖中信息,估計(jì)平均每人乘坐地鐵的月均花費(fèi)的范圍是 元;

A.20—60 B.60—120 C.120—180

②為了讓市民享受到更多的優(yōu)惠,相關(guān)部門擬確定一個(gè)折扣線,計(jì)劃使30%左右的人獲得折扣優(yōu)惠.根據(jù)圖中信息,乘坐地鐵的月均花費(fèi)達(dá)到 元的人可以享受折扣.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸的交點(diǎn)為A,B.按以下步驟作圖:①以點(diǎn)A為圓心,適當(dāng)長度為半徑作弧,分別交ABx軸于點(diǎn)C,D;②分別以點(diǎn)C,D為圓心,大于的長為半徑作弧,兩弧在∠OAB內(nèi)交于點(diǎn)M;③作射線AM,交y軸于點(diǎn)E.則點(diǎn)E的坐標(biāo)為( )

A.(0,)B.(0)C.(0,)D.(0,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,十八中九年級(jí)學(xué)生參加了中考體育模擬考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列問題:

分組

分?jǐn)?shù)段(分))

頻數(shù)

A

26x31

2

B

31x36

5

C

36x41

15

D

41x46

m

E

46x51

10

1)求全班學(xué)生人數(shù)和m的值.

2)求扇形統(tǒng)計(jì)圖中的E對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A為某封閉圖形邊界上一定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x,線段AP的長為y,表示yx的函數(shù)關(guān)系的圖象大致如圖所示,則該封閉圖形可能是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=-3x+t上.

(1)求點(diǎn)C的坐標(biāo);

(2)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;

(3)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2-5n的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線C1y=ax2+bx-1經(jīng)過點(diǎn)A-2,1)和點(diǎn)B-1,-1),拋物線C2y=2x2+x+1,動(dòng)直線x=t與拋物線C1交于點(diǎn)N,與拋物線C2交于點(diǎn)M

1)求拋物線C1的表達(dá)式;

2)直接用含t的代數(shù)式表示線段MN的長;

3)當(dāng)AMN是以MN為直角邊的等腰直角三角形時(shí),求t的值;

4)在(3)的條件下,設(shè)拋物線C1y軸交于點(diǎn)P,點(diǎn)My軸右側(cè)的拋物線C2上,連接AMy軸于點(diǎn)K,連接KN,在平面內(nèi)有一點(diǎn)Q,連接KQQN,當(dāng)KQ=1且∠KNQ=BNP時(shí),請(qǐng)直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案