【題目】如圖,已知拋物線x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線lA、B兩點,點D為線段AB上一動點,過點D軸于點C,交拋物線于點E

1)求拋物線的解析式;

2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出Sx的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由.

3)連接BE,是否存在點D,使得相似?若存在,求出點D的坐標(biāo);若不存在,說明理由.

【答案】(1);(2)x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標(biāo)為.(3)存在點D,使得相似,此時點D的坐標(biāo)為

【解析】

利用二次函數(shù)圖象上點的坐標(biāo)特征可得出點A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;

由點A、B的坐標(biāo)可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標(biāo)可得出點DE的坐標(biāo),進而可得出DE的長度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;

、,利用相似三角形的判定定理可得出:若要相似,只需,設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,進而可得出DE、BD的長度當(dāng)時,利用等腰直角三角形的性質(zhì)可得出,進而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時,由點B的縱坐標(biāo)可得出點E的縱坐標(biāo)為4,結(jié)合點E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.

當(dāng)時,有,

解得:,

A的坐標(biāo)為

當(dāng)時,

B的坐標(biāo)為

,

,解得:,

拋物線的解析式為

A的坐標(biāo)為,點B的坐標(biāo)為,

直線AB的解析式為

D的橫坐標(biāo)為x,則點D的坐標(biāo)為,點E的坐標(biāo)為,

如圖

F的坐標(biāo)為,點A的坐標(biāo)為,點B的坐標(biāo)為

,,

當(dāng)時,S取最大值,最大值為18,此時點E的坐標(biāo)為,

x的函數(shù)關(guān)系式為S存在最大值,最大值為18,此時點E的坐標(biāo)為

,,

若要相似,只需如圖

設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,

當(dāng)時,

,

,

為等腰直角三角形.

,即,

解得:舍去,

D的坐標(biāo)為

當(dāng)時,點E的縱坐標(biāo)為4,

,

解得:,舍去,

D的坐標(biāo)為

綜上所述:存在點D,使得相似,此時點D的坐標(biāo)為

故答案為:(1;(2x的函數(shù)關(guān)系式為S存在最大值,最大值為18,此時點E的坐標(biāo)為.(3)存在點D,使得相似,此時點D的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.

(1)求BCD的度數(shù).

(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°0.36,tan18°0.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為(  )(精確到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題9分)據(jù)報道,國際剪刀石頭布協(xié)會提議將剪刀石頭布作為奧運會比賽項目.某校學(xué)生會想知道學(xué)生對這個提議的了解程度,隨機抽取部分學(xué)生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有___名,扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為___;請補全條形統(tǒng)計圖;

2)若該校共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中對將剪刀石頭布作為奧運會比賽項目的提議達到了解基本了解程度的總?cè)藬?shù);

3剪刀石頭布比賽時雙方每次任意出剪刀、石頭、這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】柳市樂華電器廠對一批電容器質(zhì)量抽檢情況如下表:

1)從這批電容器中任選一個,是正品的概率是多少?(2)若這批電容器共生產(chǎn)了14000個,其中次品大約有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O與∠α的兩邊相切,若∠α60°,則圖中陰影部分的面積S關(guān)于O的半徑r的函數(shù)圖象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1,ABC的三個頂點均在小正方形的頂點上.

1)請在方格紙上建立平面直角坐標(biāo)系,使點AC的坐標(biāo)分別為(2,3)、(6,2),并寫出點B的坐標(biāo);

2)以原點O為位似中心,在第一象限內(nèi)將ABC放大,相似比為2,畫出放大后的A'B'C';

3)直接寫出BCAC的交點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:

(1)∠C=   °;

(2)此時刻船與B港口之間的距離CB的長(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案