【題目】如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負(fù)半軸于E,雙曲線y=(x>0)的圖象經(jīng)過點(diǎn)A,若△BEC的面積為6,則k等于( 。
A. 3 B. 6 C. 12 D. 24
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=10,AB=14,點(diǎn)E為DC上一個動點(diǎn),若將△ADE沿AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)D′落在∠ABC的角平分線上時,則點(diǎn)D′到AB的距離為( 。
A. 6 B. 6或8 C. 7或8 D. 6或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖17-Z-11,小紅同學(xué)要測量A,C兩地的距離,但A,C之間有一水池,不能直接測量,于是她在A,C同一水平面上選取了一點(diǎn)B,點(diǎn)B可直接到達(dá)A,C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學(xué)求出A,C兩地之間的距離.(結(jié)果精確到1米,參考數(shù)據(jù): ≈4.6)
圖17-Z-11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些大小相同且棱長為1的小正方體組合成的簡單幾何體.
(1)該幾何體的立體圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖(請涂上陰影):
(2)這個簡單幾何體的表面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,點(diǎn)P為線段BE延長線上一點(diǎn),連接CP,以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F.
(1)求證:;
(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,人們有吃粽子的習(xí)慣.某校數(shù)學(xué)興趣小組為了了解本校學(xué)生喜愛粽子的情況,隨機(jī)抽取了50名同學(xué)進(jìn)行問卷調(diào)查,經(jīng)過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖(注:每一位同學(xué)在任何一種分類統(tǒng)計中只有一種選擇)
請根據(jù)統(tǒng)計圖完成下列問題:
(1)扇形統(tǒng)計圖中,“很喜歡”所對應(yīng)的圓心角為 度;條形統(tǒng)計圖中,喜歡“糖餡”粽子的人數(shù)為 人;
(2)若該校學(xué)生人數(shù)為800人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中“很喜歡”和“比較喜歡”粽子的人數(shù)之和;
(3)小軍最愛吃肉餡粽子,小麗最愛吃糖餡粽子.某天小霞帶了重量、外包裝完全一樣的肉餡、糖餡、棗餡、海鮮餡四種粽子各一只,讓小軍、小麗每人各選一只.請用樹狀圖或列表法求小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣40|+(b+8)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請在數(shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個單位長度的速度向終點(diǎn)A移動;當(dāng)點(diǎn)P移動到O點(diǎn)時,點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個單位長度的速度向右移動,且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時,點(diǎn)Q就停止移動,設(shè)點(diǎn)P移動的時間為t秒,問:當(dāng)t為多少時,P、Q兩點(diǎn)相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,對角線 AC、BD交于點(diǎn) M,點(diǎn)E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點(diǎn)F.
(1)求證:;
(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com