【題目】已知一個(gè)長(zhǎng)方體的長(zhǎng)為1cm,寬為1cm,高為2cm,請(qǐng)求出:
(1)長(zhǎng)方體有 條棱, 個(gè)面;
(2)長(zhǎng)方體所有棱長(zhǎng)的和;
(3)長(zhǎng)方體的表面積.
【答案】(1)12,6;(2)16(cm);(3)長(zhǎng)方體的表面積是10cm2.
【解析】
(1)根據(jù)長(zhǎng)方體的性質(zhì)可得出;
(2)長(zhǎng)方體的棱長(zhǎng)總和=4(長(zhǎng)+寬+高);
(3)長(zhǎng)方體的表面積=2(長(zhǎng)×寬+長(zhǎng)×高+寬×高),把相關(guān)數(shù)字代入即可.
解:(1)長(zhǎng)方體有12條棱,6個(gè)面;
故答案為:12,6;
(2)(1+1+2)×4,,
=4×4,
=16(cm).
故長(zhǎng)方體所有棱長(zhǎng)的和是16cm;
(3)(1×1+1×2+1×2)×2,
=(1+2+2)×2,,
=5×2,
=10(cm2).
故長(zhǎng)方體的表面積是10cm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動(dòng)點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .
其中正確的結(jié)論有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將長(zhǎng)方形紙片按如圖所示的方式折疊,BC、BD為折痕.若∠ABC=25°,則∠DBE的度數(shù)為( 。
A. 50° B. 65° C. 45° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,請(qǐng)說(shuō)明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,然后解答后面的問題.
(1)定義:把四邊形的某些邊向兩方延長(zhǎng),其他各邊有不在延長(zhǎng)所得直線的同一旁,這樣的四邊形叫做凹四邊形.如圖1,四邊形ABCD為凹四邊形.
(2)性質(zhì)探究:請(qǐng)完成凹四邊形一個(gè)性質(zhì)的證明.
已知:如圖2,四邊形ABCD是凹四邊形.
求證:∠BCD=∠B+∠A+∠D.
(3)性質(zhì)應(yīng)用:
如圖3,在凹四邊形ABCD中,∠BAD的角平分線與∠BCD的角平分線交于點(diǎn)E,若∠ADC=140°,∠AEC=102°,則∠B=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣3的圖象與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.該拋物線的頂點(diǎn)為M.
(1)求該拋物線的解析式;
(2)判斷△BCM的形狀,并說(shuō)明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以點(diǎn)P,A,C為頂點(diǎn)的三角形與△BCM相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 已知點(diǎn)A、點(diǎn)B是直線上的兩點(diǎn),AB =12厘米,點(diǎn)C在線段AB上,且AC=8厘米.點(diǎn)P、點(diǎn)Q是直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P的速度為1厘米/秒,點(diǎn)Q的速度為2厘米/秒.點(diǎn)P、Q分別從點(diǎn)C、點(diǎn)B同時(shí)出發(fā),在直線上運(yùn)動(dòng),則經(jīng)過 秒時(shí)線段PQ的長(zhǎng)為5厘米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com