【題目】在大課間活動中,體育老師隨機抽取了九年級甲、乙兩班部分女生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和頻數(shù)直方圖,請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a= ,b= ;
(2)將頻數(shù)直方圖補充完整;
(3)如果該校九年級共有女生360人,估計仰臥起坐能夠一分鐘完成30次或30次以上的女學生有多少人?
(4)已知第一組有兩名甲班學生,第四組中只有一名乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
【答案】(1)0.3,4;(2)見解析;(3)198;(4).
【解析】
(1)由第一組的頻數(shù)和頻率得到總?cè)藬?shù),乘以0.2即可得b的值,用10.150.350.20可得a的值;
(2)根據(jù)表格中第二組的數(shù)據(jù)將直方圖補充完整;
(3)利用樣本估計總體的知識求解即可得答案;
(4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖得所有等可能的結(jié)果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求答案.
解:(1)a=10.150.350.20=0.3;
總?cè)藬?shù)為:3÷0.15=20(人),
b=20×0.20=4(人);
故答案為:0.3,4;
(2)補全統(tǒng)計圖如圖:
(3)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:360×(0.35+0.20)=198(人);
(4)畫樹狀圖得:
∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學生的有6種情況,
∴所選兩人正好都是甲班學生的概率P=.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關的不同類型的結(jié)論;
(2)當a=時,設y1=-ax2-ax+1與x軸分別交于M,N兩點(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(E在F的左邊),觀察M,N,E,F四點坐標,請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC
(1)發(fā)現(xiàn):如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關系是 ,MN與EC的數(shù)量關系是
(2)探究:若把(1)小題中的△AED繞點A旋轉(zhuǎn)一定角度,如圖2所示,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關系和數(shù)量關系仍然能成立嗎?若成立,請以逆時針旋轉(zhuǎn)45°得到的圖形(圖3)為例給予證明位置關系成立,以順時針旋轉(zhuǎn)45°得到的圖形(圖4)為例給予證明數(shù)量關系成立,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學藝術節(jié)期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
(1)王老師采取的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共 件,其中b班征集到作品 件,請把圖2補充完整;
(2)王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?
(3)如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學校總結(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
(1)4(2x﹣1)2﹣36=0;
(2)x(x﹣3)+x﹣3=0;
(3)3x2﹣1=4x;
(4)(2x﹣3)2﹣5(2x﹣3)+6=0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),則位似中心的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AC=BC,CD是⊙O的直徑,與AB相交于點G,過點D作EF∥AB,分別交CA、CB的延長線于點E、F,連接BD.
(1)求證:EF是⊙O的切線;
(2)求證:BD2=ACBF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖1,拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的表達式;
(2)點是拋物線上異于點的動點,若的面積與的面積相等,求出點的坐標;
(3)如圖2,當為的中點時,過點作軸,交拋物線于點.連接,將沿軸向左平移個單位長度(),將平移過程中與重疊部分的面積記為,求與的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com