【題目】如圖,已知矩形ABCD中,AB1,EBC上一點(diǎn),將DCE沿DE翻折得到DCE

(1) 如圖1,若點(diǎn)B恰好在DC的延長線上,且CBCD,求CE的長;

(2) 如圖2,若點(diǎn)A恰好在EC的延長線上,且CA2CE,求BE的長.

【答案】(1) ;(2) .

【解析】

(1)由折疊得到C′D=CD=1,得到BD=2,進(jìn)而得到BC=,設(shè)CE=C′E=x,則BE=-x,然后在RtBC′E中使用勾股定理即可求解.

(2)連接DE,由折疊得∠DEC=DEA,又∠DEC=ADE,得到∠DEA=ADE,得到△ADE為等腰三角形,設(shè)CE= C′E=y,則AE=AD=BC=3y,得到BE=2y,在RtABE中使用勾股定理即可求解.

解:(1)∵四邊形ABCD是矩形,∴CD=AB=1,∠C=90°

∵△DCE沿DE翻折得到△DCE,∴CE=C′EC′D=CD,EC′D=C=90°

C′BC′D=C′D=CD=AB=1

BD=2,

RtBCD中,由勾股定理可知BC=

設(shè)CE=C′E=x,則BE=-x

RtBC′E中,由勾股定理有:

代入數(shù)據(jù):

解得:,即CE=

故答案為:.

(2)連接DE,如下圖所示:

由折疊得∠DEC=DEA

又∵ADBC,∴∠ADE=DEC

∴∠DEA=ADE

∴△ADE為等腰三角形

AE=AD

設(shè)CE= C′E=y,則AC′=2C′E =2y

BC=AD=AE= AC′+ C′E =2y+y=3y

BE=BC-CE=3y-y=2y

RtABE中,由勾股定理得:

代入數(shù)據(jù)得:

解得:,即BE =2y=

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù);④非負(fù)數(shù)就是正數(shù);④不僅是有理數(shù),而且是分?jǐn)?shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為( )

A. 7B. 6C. 5D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張丘建,我國南北朝時期(約公元5世紀(jì))著名的數(shù)學(xué)家,著有《張丘建算經(jīng)》.一次宴會上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當(dāng)獵人追至處時,與鹿所在的處還差36步(古代:1=300步);鹿突然向北跑,此時騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點(diǎn)、、在同一直線上).如果此鹿不向北轉(zhuǎn),而繼續(xù)向西跑,獵人需要追多遠(yuǎn)才能追上此鹿?”,已知單位時間內(nèi)鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請解答這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天早晨,小童從家跑步去體育場鍛煉,同時小鄭從體育場晨練結(jié)束回家,途中兩人相遇.小童跑到體育場后發(fā)現(xiàn)要下雨,立即按原路返回,遇到小鄭后兩人一起回到家(小童和小鄭始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與小童出發(fā)的時間x(分)之間的函數(shù)圖象.當(dāng)x_______時,小童與小鄭相距600米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly2x4x軸于A,交y軸于B

(1) 直接寫出直線l向右平移2個單位得到的直線l1的解析式_______;

(2) 直接寫出直線l關(guān)于y=-x對稱的直線l2的解析式_______;

(3) 點(diǎn)P在直線l上,若SOAP2SOBP,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點(diǎn)A,過點(diǎn)A作AH⊥x 軸于點(diǎn)H,在拋物線y=x2(x>0)上取一點(diǎn)P,在y軸上取一點(diǎn)Q,使得以P、O、Q為頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過邊長為2的等邊三角形ABC的頂點(diǎn)C作直線l BC,然后作△ABC關(guān)于直線l對稱的△ABCP為線段AC上一動點(diǎn),連接AP,PB,則APPB的最小值是

A.4B.3C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1 4)和(4, 4),拋物線的頂點(diǎn)在線段AB上運(yùn)動,與x軸交于C、D兩點(diǎn)(CD的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為-3,則點(diǎn)D的橫坐標(biāo)最大值為_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點(diǎn)OADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案