【題目】如圖,△ABC是等邊三角形,D、E分別在BC、AC上,且CD=AE,AD與BE相交于P,BQ⊥AD于Q.
(1)求證:;
(2)若PQ=4,PE=1,求AD的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)9.
【解析】
(1)先根據(jù)等邊三角形的性質(zhì)和SAS證明△ABE≌△CAD,可得∠ABE=∠CAD,再利用三角形的外角性質(zhì)即得結(jié)論;
(2)先利用30°角的直角三角形的性質(zhì)求出BP的長(zhǎng),進(jìn)而可得BE的長(zhǎng),再利用(1)的結(jié)論即可得出答案.
(1)∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∴∠BPQ=∠ABE+∠BAP=∠CAD+∠BAP=∠BAC=60;
(2) 在Rt△BPQ中,∠BPQ=60°,∴∠PBQ=30°,
∵PQ=4,∴BP=8,
又∵PE=1,∴BE=BP+PE=9,
由(1)得△ABE≌△CAD,∴AD=BE=9.
答:AD長(zhǎng)為9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司銷售員的獎(jiǎng)勵(lì)工資由兩部分組成:基本工資,每人每月2400元;獎(jiǎng)勵(lì)工資,每銷售一件產(chǎn)品,獎(jiǎng)勵(lì)10元.
(1)設(shè)某銷售員月銷售產(chǎn)品件,他應(yīng)得的工資為元,求與之間的函數(shù)關(guān)系式;
(2)若該銷售員某月工資為3600元,他這個(gè)月銷價(jià)了多少件產(chǎn)品?
(3)要使月工資超過(guò)4200元,該月的銷售量應(yīng)當(dāng)超過(guò)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,為軸正半軸上一點(diǎn),連接,在第一象限作, ,過(guò)點(diǎn)作直線軸于,直線與直線交于點(diǎn),且,則直線解析式為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EF⊥AB,F為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,分別在AB的右側(cè)、AC的左側(cè)作等邊△ABE和等邊△ACD,BE與CD相交于點(diǎn)F,連接BD,若BD=BF,則∠BDF為__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知ABCD的周長(zhǎng)為26,∠ABC=120°,BD為一條對(duì)角線,⊙O內(nèi)切于△ABD,E,F(xiàn),G為切點(diǎn),已知⊙O的半徑為.求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=8,AD=6,E為BC邊上一點(diǎn),將△ABE沿著AE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△EFC為直角三角形時(shí)BE=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com