【題目】如圖1,在三角形中,把繞點順時針旋轉得到,把繞點逆時針旋轉,得到,連接,過點作的垂線,交于點,交于點.
(特例嘗試)如圖2,當時,
①求證:;
②猜想與的數量關系并說明理由.
(理想論證)在圖1中,當為任意三角形時,②中與的數量關系還成立嗎?請給予證明.
(拓展應用)如圖3,直線與軸,軸分別交于、兩點,分別以,為直角邊在第二、一象限內作等腰和等腰,連接,交軸于點.試猜想的長是否為定值,若是,請求出這個值;若不是,請說明理由.
【答案】[特例嘗試]①見解析,②,理由見解析;[理想論證]成立,證明見解析;[拓展應用]是定值,.
【解析】
[特例嘗試]①根據垂直的定義可得∠BAD=∠CAE=90°,用360°減去其它三個角即可證得;②根據旋轉的性質易證△BAC≌△DAE(SAS),然后根據全等三角形對應邊相等可得BC=DE,根據全等三角形對應角相等結合同角的余角相等可證∠DAG=∠EDA,根據等角對等邊可證DG=AG,同理證明GE=AG即可證明;
[理想論證]過點作,交延長線于點,過點做,交于點,通過證明三角形全等,根據全等三角形的性質可證;
[拓展應用]利用一次函數求得AO的長度,結合[理想論證]可知.
[特例嘗試]①證明:∵BA⊥AD,AC⊥AE
∴∠BAD=∠CAE=90°,
又∵
∴
②,證明如下:
由旋轉的性質可得AD=AB,AE=AC,
又∵,
∴△BAC≌△DAE(SAS)
∴∠EDA=∠CBA,∠DEA=∠BCA,BC=DE,
∵GF⊥BC,
∴∠CAF+∠ACB=90°,∠ABC+∠ACB=90°
∴∠ABC=∠CAF=∠DAG=∠EDA,
∴DG=AG,
同理可證GE=AG,
∴.
[理想論證]成立,理由如下:
過點作,交延長線于點,過點做,交于點.
∵
∴,
∵
∴
∴
∵
∴
∴,
同理可得,
∴
∵
∴
∴
∵
∴
[拓展應用]對于一次函數,當y=0時,即,
解得,
∴,
由題[理想論證]可知.
科目:初中數學 來源: 題型:
【題目】小穎和小紅兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)試驗,他們共做了60次試驗,試驗的結果如下:
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據上述試驗,一次試驗中出現5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現6點朝上的次數正好是100次”.小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線的解析式為,直線的解析式為,與軸,軸分別交于點,點,直線與交于點.
(1)求點,點,點的坐標,并求出的面積;
(2)若直線 上存在點(不與重合),滿足,請求出點的坐標;
(3)在軸右側有一動直線平行于軸,分別與,交于點,且點在點的下方,軸上是否存在點,使為等腰直角三角形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:
①因為a>0,所以函數有最大值;
②該函數圖象關于直線對稱;
③當時,函數y的值大于0;
④當時,函數y的值都等于0.
其中正確結論的個數是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】漢諾塔問題是指有三根桿子和套在桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上;
(1)每次只能移動1個碟片.
(2)較大的碟片不能放在較小的碟片上面.
如圖所示,將1號桿子上所有碟片移到2號桿子上,3號桿可以作為過渡桿使用,稱將碟片從一根桿子移動到另一根桿子為移動一次,記將l號桿子上的個碟片移動到2號桿子上最少需要次,則( )
A.31次B.33次C.63次D.65次
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A的坐標是,點C是x軸上的一個動點.當點C在x軸上移動時,始終保持是等腰直角三角形(,點A、C、P按逆時針方向排列);當點C移動到點O時,得到等腰直角三角形(此時點P與點B重合).
(初步探究)
(1)寫出點B的坐標________;
(2)點C在x軸上移動過程中,作軸,垂足為點D,都有,請在圖2中畫出當等腰直角的頂點P在第四象限時的圖形,并求證:.
(深入探究)
(3)當點C在x軸上移動時,點P也隨之運動.探究點P在怎樣的圖形上運動,請直接寫出結論,并求出這個圖形所對應的函數表達式;
(4)直接寫出的最小值為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠AOB=60°,點P在邊OA上,點M、N在邊OB上.
(1)若∠PNO=60°,證明△PON是等邊三角形;
(2)若PM=PN,OP=12,MN=2,求OM的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數與一次函數的
圖像交于點A.
(1)求點A的坐標;
(2)在y軸上確定點M,使得△AOM是等腰三角形,請直接寫出點M的坐標;
(3)如圖,設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交和的圖像于點B、C,連接OC,若BC=OA,求△ABC的面積及點B、點C的坐標;
(4)在(3)的條件下,設直線交x軸于點D,在直線BC上確定點E,使得△ADE的周長最小,請直接寫出點E的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com