【題目】如圖(1),中,、分別是、邊上的高,、分別是線段、的中點(diǎn).
(1)求證:;
(2)聯(lián)結(jié)、,猜想與之間的關(guān)系,并寫出推理過程;
(3)若將銳角變?yōu)殁g角,如圖(2),上述(1)(2)中的結(jié)論是否都成立?若結(jié)論成立,直接回答,不需證明;若結(jié)論不成立,說明理由.
【答案】(1)詳見解析;(2),證明詳見解析;(3)結(jié)論(1)成立;結(jié)論(2)不成立,理由詳見解析.
【解析】
(1)連接DM、ME,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DM=BC,ME=BC,從而得到DM=ME,再根據(jù)等腰三角形三線合一的性質(zhì)證明;
(2)根據(jù)三角形的內(nèi)角和定理可得∠ABC+∠ACB=180°-∠A,再根據(jù)等腰三角形兩底角相等表示出∠BMD+∠CME,然后根據(jù)平角等于180°表示出∠DME,整理即可得解;
(3)根據(jù)三角形的內(nèi)角和定理可得∠ABC+∠ACB=180°-∠A,再根據(jù)等腰三角形兩底角相等和三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠BME+∠CME,然后根據(jù)平角等于180°表示出∠DME,整理即可得解.
(1)如圖,連接、,
∵、分別是、邊上的高,是的中點(diǎn),
∴,,
∴,
又為中點(diǎn),
∴;
(2)在中,,
∵,
∴
,
∴;
(3)結(jié)論(1)成立;結(jié)論(2)不成立,理由如下:
在中,,
∵,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點(diǎn)D,DE⊥AB交AB的延長線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E在同一條直線上,連結(jié)BD,BE.以下四個(gè)結(jié)論:①BD=CE ;②BD⊥CE ;③∠ACE+∠DBC=45°; ④∠ACE=∠DBC ,其中結(jié)論正確的是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠A=90°,E是AB上的一點(diǎn),且AD=BE,∠1=∠2.
(1)求證:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線y=kx(k>0)分別交反比例函數(shù)y=和y= 在第一象限的圖象于點(diǎn)A,B,過點(diǎn)B作BD⊥x軸于點(diǎn)D,交y=的圖象于點(diǎn)C,連接AC.若△ABC是等腰三角形,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是( ).
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:以線段l的一個(gè)端點(diǎn)為旋轉(zhuǎn)中心,將這條線段順時(shí)針旋轉(zhuǎn)α(0°<α≤360°),再沿水平方向向右平移m個(gè)單位后得到對應(yīng)線段l′(若m<0,則表示沿水平向左的方向平移|m|個(gè)單位),則將線段l到線段l′的變換記為<α,m>.如圖①,將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°,再沿水平向右的方向平移3個(gè)單位后得到線段A′B′的變換記為<30°,3>.
(1)已知:圖②、圖③均為5×4的正方形網(wǎng)格,在圖②中將線段AB繞點(diǎn)A進(jìn)行變換<90°,4>,得到對應(yīng)線段A′B′;在圖③中將線段AB繞點(diǎn)A進(jìn)行變換<270°,﹣3>,得到對應(yīng)線段A′B′,按要求分別畫出變換后的對應(yīng)線段.
(2)如圖④,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x與x軸正半軸交于點(diǎn)A,線段OA繞點(diǎn)A進(jìn)行變換<α,m>后得到對應(yīng)線段的一個(gè)端點(diǎn)恰好落在拋物線的頂點(diǎn)處,直接寫出符合題意的<α,m>為________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是學(xué)習(xí)“分式方程應(yīng)用”時(shí),老師板書的例題和兩名同學(xué)所列的方程.
15.3分式方程
例:有甲、乙兩個(gè)工程隊(duì),甲隊(duì)修路米與乙隊(duì)修路米所用時(shí)間相等.乙隊(duì)每天比甲隊(duì)多修米,求甲隊(duì)每天修路的長度.
冰冰:
慶慶:
根據(jù)以上信息,解答下列問題:
(1)冰冰同學(xué)所列方程中的表示_____,慶慶同學(xué)所列方 程中的表示;
(2)兩個(gè)方程中任選一個(gè),寫出它的等量關(guān)系;
(3)解(2)中你所選擇的方程,并解答老師的例題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特征:甲:對稱軸是;乙:與軸兩個(gè)交點(diǎn)的橫坐標(biāo)都是整數(shù);丙:與軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)點(diǎn)為頂點(diǎn)的三角形面積為.請寫出滿足上述全部特征的一個(gè)二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com