【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點,AB=6,BC=8,則四邊形EFGH的面積是

【答案】24
【解析】解:∵E,F(xiàn),G,H分別是矩形ABCD各邊的中點,AB=6,BC=8,
∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.
在△AEH與△DGH中,

∴△AEH≌△DGH(SAS).
同理可得△AEH≌△DGH≌△CGF≌△BEF,
∴S四邊形EFGH=S正方形﹣4SAEH=6×8﹣4× ×3×4=48﹣24=24.
故答案為:24.
先根據(jù)E,F(xiàn),G,H分別是矩形ABCD各邊的中點得出AH=DH=BF=CF,AE=BE=DG=CG,故可得出△AEH≌△DGH≌△CGF≌△BEF,根據(jù)S四邊形EFGH=S正方形﹣4SAEH即可得出結(jié)論.本題考查的是中點四邊形,熟知矩形的對邊相等且各角都是直角是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】身高相等的四名同學(xué)甲、乙、丙、丁參加風(fēng)箏比賽,四人放出風(fēng)箏的線長、線與地面的夾角如下表(假設(shè)風(fēng)箏線是拉直的),則四名同學(xué)所放的風(fēng)箏中最高的是( 。

同學(xué)

放出風(fēng)箏線長

140m

100m

95m

90m

線與地面夾角

30°

45°

45°

60°


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長線于E , 則圖中一定相似的三角形是( 。
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接杭州G20峰會,某校開展了設(shè)計“YJG20”圖標(biāo)的活動,下列圖形中及時軸對稱圖形又是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國詩詞大會”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計圖表:
抽取的200名學(xué)生海選成績分組表

組別

海選成績x

A組

50≤x<60

B組

60≤x<70

C組

70≤x<80

D組

80≤x<90

E組

90≤x<100


請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計圖補(bǔ)充完整;(溫馨提示:請畫在答題卷相對應(yīng)的圖上)
(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 , 表示C組扇形的圓心角θ的度數(shù)為度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計該校參加這次海選比賽的2000名學(xué)生中成績“優(yōu)等”的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補(bǔ),則弦BC的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.

(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是 的中點時,判斷以A,O,C,F(xiàn)為頂點的四邊形是什么特殊四邊形?說明理由.

查看答案和解析>>

同步練習(xí)冊答案