【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是 的中點時,判斷以A,O,C,F(xiàn)為頂點的四邊形是什么特殊四邊形?說明理由.
【答案】
(1)
證明:
連接BC、OC,
∵AB是⊙O的直徑,
∴∠OCD=90°,
∴∠OCA+∠OCB=90°,
∵∠OCA=∠OAC,∠B=∠OCB,
∴∠OAC+∠B=90°,
∵CD為切線,
∴∠OCD=90°,
∴∠OCA+∠ACD=90°,
∴∠B=∠ACD,
∵PE⊥AB,
∴∠APE=∠DPC=∠B,
∴∠DPC=∠ACD,
∴AP=DC;
(2)
解:以A,O,C,F(xiàn)為頂點的四邊形是菱形;
∵∠CAB=30°,∴∠B=60°,
∴△OBC為等邊三角形,
∴∠AOC=120°,
連接OF,AF,
∵F是 的中點,
∴∠AOF=∠COF=60°,
∴△AOF與△COF均為等邊三角形,
∴AF=AO=OC=CF,
∴四邊形OACF為菱形.
【解析】本題主要考查了切線的性質(zhì)、圓周角定理和等邊三角形的判定等,作出恰當(dāng)?shù)妮o助線利用切線的性質(zhì)是解答此題的關(guān)鍵.(1)連接BC、OC,利用圓周角定理和切線的性質(zhì)可得∠B=∠ACD,由PE⊥AB,易得∠APE=∠DPC=∠B,等量代換可得∠DPC=∠ACD,可證得結(jié)論;(2)由∠CAB=30°易得△OBC為等邊三角形,可得∠AOC=120°,由F是 的中點,易得△AOF與△COF均為等邊三角形,可得AF=AO=OC=CF,易得以A,O,C,F(xiàn)為頂點的四邊形是菱形.
【考點精析】掌握垂徑定理和切線的性質(zhì)定理是解答本題的根本,需要知道垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進甲、乙兩種商品,乙商品的單價是甲商品單價的2倍,購買240元甲商品的數(shù)量比購買300元乙商品的數(shù)量多15件,求兩種商品單價各為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點C恰好落在AD邊上的點P處,則FP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東坡商貿(mào)公司購進某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為p= 且其日銷售量y(kg)與時間t(天)的關(guān)系如表:
時間t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日銷售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC繞點O順時針方向旋轉(zhuǎn)90°后得△A1B1C1 , 畫出△A1B1C1并直接寫出點C1的坐標(biāo)為;
(2)以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com