【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,F(xiàn)C=5,則正方形ABCD的外接圓的半徑是

【答案】2
【解析】解:連接AC, ∵AE丄EF,EF丄FC,
∴∠E=∠F=90°,
∵∠AME=∠CMF,
∴△AEM∽△CFM,
= ,
∵AE=3,EF=4,F(xiàn)C=5,
= ,
∴EM=1.5,F(xiàn)M=2.5,
在Rt△AEM中,AM= = ,
在Rt△FCM中,CM= = ,
∴AC=2 ,
∴正方形ABCD的外接圓的半徑是2 ,
故答案為:2

首先連接AC,則可證得△AEM∽△CFM,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得EM與FM的長(zhǎng),然后由勾股定理求得AM與CM的長(zhǎng),進(jìn)而得到AC的長(zhǎng),在Rt△ABC中,由AB=ACsin45°,即可求出正方形的邊長(zhǎng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CD⊥DA,DA⊥AB,∠1=∠2.試說(shuō)明DF∥AE.請(qǐng)你完成下列填空,把證明過(guò)程補(bǔ)充完整.

證明:∵   ,

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,AOBC,DOOE.

(1)不添加其他條件情況下,請(qǐng)盡可能多地寫(xiě)出圖中有關(guān)角的等量關(guān)系(至少3個(gè));

(2)如果∠COE 350,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,點(diǎn)A,B分別在x軸和y軸上, = ,∠AOB的角平分線與OA的垂直平分線交于點(diǎn)C,與AB交于點(diǎn)D,反比例函數(shù)y= 的圖象過(guò)點(diǎn)C,若以CD為邊的正方形的面積等于 ,則k的值是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小劉上午從家里出發(fā),騎車去一家超市購(gòu)物,然后從這家超市返回家中.小劉離家的路程y(米)和所經(jīng)過(guò)的時(shí)間x(分)之間的函數(shù)圖象如圖所示,則下列說(shuō)法不正確的是( 。

A. 小劉家與超市相距3000 B. 小劉去超市途中的速度是300/

C. 小劉在超市逗留了30分鐘 D. 小劉從超市返回家比從家里去超市的速度快

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(1)(-)-(+)-(-)-(-);

(2)(-8)-(+12)-(-70)-(-8);   (3)(-3)-(-17)-(-33)-81.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有兩個(gè)實(shí)數(shù)根x1 , x2
(1)求實(shí)數(shù)k的取值范圍;
(2)是否存在實(shí)數(shù)k使得x1x2﹣x12﹣x22≥0成立?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句:①近似數(shù)0.010精確到千分位;②如果兩個(gè)角互補(bǔ),那么兩個(gè)角一定是一個(gè)為銳角,另一個(gè)為鈍角;③若線段AP=BP,則P一定是AB中點(diǎn);④A與B兩點(diǎn)間的距離是指連接A、B兩點(diǎn)間的線段;⑤││=;⑥最大的負(fù)整數(shù)是-1,其中說(shuō)法正確的是_________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算:(15x3y+10x2y﹣5xy2÷5xy

2)計(jì)算:(3x+y)(x+2y﹣3xx+2y

3)先化簡(jiǎn),再求值:(x+2)(x2x+12,其中x=

查看答案和解析>>

同步練習(xí)冊(cè)答案