【題目】(1)計(jì)算:(15x3y+10x2y﹣5xy2)÷5xy
(2)計(jì)算:(3x+y)(x+2y)﹣3x(x+2y)
(3)先化簡,再求值:(x+2)(x﹣2)﹣(x+1)2,其中x=.
【答案】(1) xy+2y2 (2) ﹣6
【解析】試題分析:(1)利用多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則計(jì)算即可;(2)利用多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則、單項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則分別計(jì)算后,再合并同類項(xiàng)即可;(3)根據(jù)平方差公式和完全平方公式計(jì)算后,合并同類項(xiàng),再代入求值即可.
試題解析:
(1)(15x3y+10x2y﹣5xy2)÷5xy
=3x2+2x﹣y;
(2)(3x+y)(x+2y)﹣3x(x+2y)
=3x2+6xy+xy+2y2﹣3x2﹣6xy
=xy+2y2;
(3)(x+2)(x﹣2)﹣(x+1)2
=x2﹣4﹣x2﹣2x﹣1
=﹣2x﹣5,
當(dāng)x=時(shí),原式=﹣2×﹣5=﹣1﹣5=﹣6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一折線段,其中AE丄EF,EF丄FC,并且AE=3,EF=4,F(xiàn)C=5,則正方形ABCD的外接圓的半徑是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ADC=∠EFC,∠3=∠C,可推得∠1=∠2.理由如下:
解:因?yàn)椤?/span>ADC=∠EFC(已知)
所以AD∥EF( ).
所以∠1=∠4( ),
因?yàn)椤?/span>3=∠C(已知),
所以AC∥DG( ).
所以∠2=∠4( ).
所以∠1=∠2(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉加工廠要加工一批小麥,2臺大面粉機(jī)和5臺小面粉機(jī)同時(shí)工作2小時(shí)共加工小麥1.1萬斤;3臺大面粉機(jī)和2臺小面粉機(jī)同時(shí)工作5小時(shí)共加工小麥3.3萬斤.
(1)1臺大面粉機(jī)和1臺小面粉機(jī)每小時(shí)各加工小麥多少萬斤?
(2)該廠現(xiàn)有9.45萬斤小麥需要加工,計(jì)劃使用8臺大面粉機(jī)和10臺小面粉機(jī)同時(shí)工作5小時(shí),能否全部加工完?請你幫忙計(jì)算一下.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點(diǎn),則∠EDF等于°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)“敬老愛老”傳統(tǒng)美德,某校八年級(1)班的學(xué)生要去距離學(xué)校10km的敬老院看望老人,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車出發(fā),結(jié)果乘汽車的同學(xué)早到10min.已知汽車的速度是騎車學(xué)生的4倍,求騎車學(xué)生的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:
的頂點(diǎn)都在方格紙的格點(diǎn)上,先將向右平移2個單位,再向上平移3個單位,得到,其中點(diǎn)、、分別是A,B、C的對應(yīng)點(diǎn),試畫出.
連接、,則線段、的位置關(guān)系為______,線段、的數(shù)量關(guān)系為______;
平移過程中,線段AB掃過部分的面積為______平方單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.
性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.
理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)E在AD上,點(diǎn)F在BC上,AE=BF,AF與BE交于點(diǎn)O.
(1)求證:△AOB和△AOE是“友好三角形”;
(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.
探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com