【題目】如圖,矩形ABCD,,點(diǎn)MN分別為邊AD和邊BC上的兩點(diǎn),且,點(diǎn)E是點(diǎn)A關(guān)于MN所在的直線的對(duì)稱點(diǎn),取CD的中點(diǎn)F,連接EF,NF,分別將沿著EF所在的直線折疊,將沿著NF所在的直線折疊,點(diǎn)D和點(diǎn)C恰好重合于EN上的點(diǎn)以下結(jié)論中:

;;;四邊形MNCD是正方形;其中正確的結(jié)論是  

A. B. C. D.

【答案】B

【解析】

由折疊的性質(zhì)得到∠DFE=∠GFE,∠GFN=∠CFN,根據(jù)平角的定義得到EFNF;故①正確;連接AN,根據(jù)軸對(duì)稱的性質(zhì)得到∠ANM=∠ENM,推出∠MNE≠∠CNE;故②錯(cuò)誤;根據(jù)余角的性質(zhì)得到∠DFE≠∠NEM,推出△MNE∽△DEF錯(cuò)誤,故③錯(cuò)誤;設(shè)DEx,根據(jù)相似三角形的性質(zhì)得到CN8,推出四邊形MNCD是正方形;故④正確;根據(jù)線段的和差得到AM6,故⑤錯(cuò)誤.

∵由折疊的性質(zhì)得,∠DFE=∠GFE,∠GFN=∠CFN,

∵∠DFE+GFE+GFN+CFN180°,

∴∠GFN+CFN90°,

∴∠NFE90°,

EFNF;故①正確;

連接AN,

∵點(diǎn)E是點(diǎn)A關(guān)于MN所在的直線的對(duì)稱點(diǎn),

∴∠ANM=∠ENM,

∴∠ANB=∠CNE,

而四邊形ABNM不是正方形,

∴∠ANB≠∠ANM,

∴∠MNE≠∠CNE;故②錯(cuò)誤;

∵∠NEF90°,∠DFE+DEF90°,∠DEF+MEN90°,

∴∠DFE≠∠NEM

∴△MNE∽△DEF錯(cuò)誤,故③錯(cuò)誤;

設(shè)DEx,

BNAM

CN14BN ,

∵∠EFD+CFN=∠EFD+DEF90°,

∴∠DEF=∠CFN,

∵∠D=∠C90°,

∴△DEF∽△CFN,

,

FCD的在中點(diǎn),

CFDF4,

,

x2,x=﹣16(不合題意舍去),

DE2CN8,

CDCN,

∴四邊形MNCD是正方形;故④正確;

CNDM8,

AM6,故⑤錯(cuò)誤,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣2,3),B(﹣6,0),C(﹣1,0).

(1)將△ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)P的坐標(biāo)

(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)Q的坐標(biāo)

(3)請(qǐng)直接寫出:以A、BC為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在矩形中,動(dòng)點(diǎn)出發(fā),以相同的速度,沿 方向運(yùn)動(dòng)到點(diǎn)處停止.設(shè)點(diǎn)運(yùn)動(dòng)的路程為, 面積為,的函數(shù)圖象如圖②所示.

(1)矩形的面積為 ;

(2)如圖③,若點(diǎn)沿邊向點(diǎn)以每秒1個(gè)單位的速度移動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)沿邊向點(diǎn)以每秒2個(gè)單位的速度移動(dòng).如果兩點(diǎn)在分別到達(dá)、兩點(diǎn)后就停止移動(dòng),回答下列問(wèn)題:

①當(dāng)運(yùn)動(dòng)開始秒時(shí),試判斷的形狀;

②在運(yùn)動(dòng)過(guò)程中,是否存在這樣的時(shí)刻,使以為圓心,的長(zhǎng)為半徑的圓與矩形的對(duì)角線相切,若存在,求出運(yùn)動(dòng)時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校隨機(jī)抽取九年級(jí)部分同學(xué)接受一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動(dòng),學(xué)校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:

九年級(jí)接受調(diào)查的同學(xué)共有多少名,并補(bǔ)全條形統(tǒng)計(jì)圖;

九年級(jí)共有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)聽音樂(lè)減壓的學(xué)生有多少名;

若喜歡交流談心5名同學(xué)中有三名男生和兩名女生,心理老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,請(qǐng)用畫樹狀圖或列表的方法求同時(shí)選出的兩名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的A1B1C1

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的A1B2C2

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,,延長(zhǎng)DA于點(diǎn)E,使得,連接BE

求證:四邊形AEBC是矩形;

過(guò)點(diǎn)EAB的垂線分別交AB,AC于點(diǎn)F,G,連接CEAB于點(diǎn)O,連接OG,若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一座大橋的兩端位于河的 A、B 兩點(diǎn),某同學(xué)為了測(cè)量 A、B 兩點(diǎn)之間的河寬,在垂直于大橋 AB 的直線型道路 l 上測(cè)得了如下的數(shù)據(jù):∠BDA=76.1°,∠BCA=68.2°CD=42.8 米。求大橋 AB 的長(zhǎng)(精確到 1 ) 參考數(shù)據(jù):sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段ACAG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;

(3)設(shè)AEm,

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對(duì)應(yīng)邊BCCE、EF在同一條直線上,連接BG,分別交ACDC、DE于點(diǎn)PQ、K,其中SPQC=3,則圖中三個(gè)陰影部分的面積和為__

查看答案和解析>>

同步練習(xí)冊(cè)答案