【題目】我們來(lái)定義一種新運(yùn)算:對(duì)于任意實(shí)數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1
(1)計(jì)算(﹣3)※9
(2)嘉琪研究運(yùn)算“※”之后認(rèn)為它滿(mǎn)足交換律,你認(rèn)為她的判斷 (正確、錯(cuò)誤)
(3)請(qǐng)你幫助嘉琪完成她對(duì)運(yùn)算“※”是否滿(mǎn)足結(jié)合律的證明.
證明:由已知把原式化簡(jiǎn)得a※b=(a+1)(b+1)﹣1=ab+a+b
∵(a※b)※c=(ab+a+b)※c=
a※(b※c)=
∴
∴運(yùn)算“※”滿(mǎn)足結(jié)合律.
【答案】(1)﹣21(2)正確;(3)abc+ac+ab+bc+a+b+c;abc+ac+ab+bc+a+b+c;(a※b)※c=a※(b※c)
【解析】
(1)根據(jù)新定義運(yùn)算法則即可求出答案.
(2)只需根據(jù)整式的運(yùn)算證明法則a※b=b※a即可判斷.
(3)只需根據(jù)整式的運(yùn)算法則證明(a※b)※c=a※(b※c)即可判斷.
(1)(﹣3)※9=(﹣3+1)(9+1)﹣1=﹣21
(2)a※b=(a+1)(b+1)﹣1
b※a=(b+1)(a+1)﹣1,
∴a※b=b※a,
故滿(mǎn)足交換律,故她判斷正確;
(3)由已知把原式化簡(jiǎn)得a※b=(a+1)(b+1)﹣1=ab+a+b
∵(a※b)※c=(ab+a+b)※c
=(ab+a+b+1)(c+1)﹣1
=abc+ac+ab+bc+a+b+c
∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
∴(a※b)※c=a※(b※c)
∴運(yùn)算“※”滿(mǎn)足結(jié)合律
故答案為:(2)正確;(3)abc+ac+ab+bc+a+b+c;abc+ac+ab+bc+a+b+c;(a※b)※c=a※(b※c)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,則BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個(gè)數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫度與我們的生活息息相關(guān),你仔細(xì)觀(guān)察過(guò)溫度計(jì)嗎?如圖是一個(gè)溫度計(jì)實(shí)物示意圖,左邊的刻度是攝氏溫度(℃),右邊的刻度是華氏溫度(℉),設(shè)攝氏溫度為x(℃),華氏溫度為y(℉),則y是x的一次函數(shù).
(1)仔細(xì)觀(guān)察圖中數(shù)據(jù),試求出y與x之間的函數(shù)表達(dá)式;
(2)當(dāng)攝氏溫度為零下15℃時(shí),求華氏溫度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:用2輛A型車(chē)和1輛B型車(chē)裝滿(mǎn)貨物一次可運(yùn)貨10噸;用1輛A型車(chē)和2輛B型車(chē)裝滿(mǎn)貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)輛,B型車(chē)輛,一次運(yùn)完,且恰好每輛車(chē)都裝滿(mǎn)貨物. 根據(jù)以上信息,解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)都裝滿(mǎn)貨物一次可分別運(yùn)貨多少?lài)崳?/span>
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=1,P為△ABC內(nèi)一個(gè)動(dòng)點(diǎn),∠PAB=∠PBC,則CP的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)a∥b,a,b之間的距離為4,點(diǎn)P到直線(xiàn)a的距離為4,點(diǎn)Q到直線(xiàn)b的距離為2,PQ=2.在直線(xiàn)a上有一動(dòng)點(diǎn)A,直線(xiàn)b上有一動(dòng)點(diǎn)B,滿(mǎn)足AB⊥b,且PA+AB+BQ最小,此時(shí)PA+BQ=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新房裝修后,甲居民購(gòu)買(mǎi)家居用品的清單如下表,因污水導(dǎo)致部分信息無(wú)法識(shí)別,根據(jù)下表解決問(wèn)題:
家居用品名稱(chēng) | 單價(jià)(元) | 數(shù)量(個(gè)) | 金額(元) |
掛鐘 | 30 | 2 | 60 |
垃圾桶 | 15 | ||
塑料鞋架 | 40 | ||
藝術(shù)飾品 | a | 2 | 90 |
電熱水壺 | 35 | 1 | b |
合計(jì) | 8 | 280 |
(1)直接寫(xiě)出a= ,b= ;
(2)甲居民購(gòu)買(mǎi)了垃圾桶,塑料鞋架各幾個(gè)?
(3)若甲居民再次購(gòu)買(mǎi)藝術(shù)飾品和垃圾桶兩種家居用品,共花費(fèi)150元,則有哪幾種不同的購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC與△AEG面積之間的關(guān)系,并說(shuō)明理由。
(2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com