【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測(cè)得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來(lái)到C處,測(cè)得條幅的底部B的仰角為45°,此時(shí)小穎距大樓底端N20米.已知坡面DE20米,山坡的坡度i(即tanDEM),且D、M、EC、N、BA在同一平面內(nèi),ME、C、N在同一條直線上,求條幅AB的長(zhǎng)度(結(jié)果保留根號(hào)).

【答案】

【解析】

過(guò)點(diǎn)DDHANH,過(guò)點(diǎn)EFE⊥于DHF,首先求出DF的長(zhǎng),進(jìn)而可求出DH的長(zhǎng),在直角三角形ADH中,可求出AH的長(zhǎng),進(jìn)而可求出AN的長(zhǎng),在直角三角形CNB中可求出BN的長(zhǎng),利用AB=AH-BN計(jì)算即可.

解:過(guò)點(diǎn)DDHANH,過(guò)點(diǎn)EFE⊥于DHF
∵坡面DE=20米,山坡的坡度i=1,

EF=10米,DF=米,

DH=DF+EC+CN=+30)米,∠ADH=30°,
AH=×DH=10+)米,

AN=AH+EF=20+)米,

∵∠BCN=45°,
CN=BN=20米,
AB=AN-BN=,
答:條幅的長(zhǎng)度是米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價(jià)與3件乙商品的出廠總價(jià)相同,3件甲商品的出廠總價(jià)比2件乙商品的出廠總價(jià)多1500元.

1)求甲、乙商品的出廠單價(jià)分別是多少?

2)某銷(xiāo)售商計(jì)劃購(gòu)進(jìn)甲商品200件,購(gòu)進(jìn)乙商品的數(shù)量是甲的4倍.恰逢該廠正在對(duì)甲商品進(jìn)行降價(jià)促銷(xiāo)活動(dòng),甲商品的出廠單價(jià)降低了,該銷(xiāo)售商購(gòu)進(jìn)甲的數(shù)量比原計(jì)劃增加了,乙的出廠單價(jià)沒(méi)有改變,該銷(xiāo)售商購(gòu)進(jìn)乙的數(shù)量比原計(jì)劃少了.結(jié)果該銷(xiāo)售商付出的總貨款與原計(jì)劃的總貨款恰好相同,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn)

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的布袋中僅有2個(gè)紅球、1個(gè)黑球,這些球除顏色外無(wú)其他差別.

1)甲同學(xué)先隨機(jī)摸出一個(gè)小球,記下顏色后放回?cái)噭,再隨機(jī)摸出一個(gè)小球,則兩次摸出的小球顏色不同的概率是多少?

2)乙同學(xué)從中一次摸出兩個(gè)球,則摸出的小球均為紅色的概率是___ _.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y(k≠0x0)的圖象經(jīng)過(guò)頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5BE3DE,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生每天使用零花錢(qián)的情況,小明隨機(jī)調(diào)查了15名同學(xué),結(jié)果如表:

每天使用零花錢(qián)(單位:元)

0

2

3

4

5

人數(shù)

1

4

5

3

2

關(guān)于這15名同學(xué)每天使用零花錢(qián)的情況,下列說(shuō)法正確的是(  )

A.中位數(shù)是3B.眾數(shù)是5

C.平均數(shù)是2.5D.方差是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABCOAOC分別在x軸,y的正半軸上,且OA8OC6,連接AC,點(diǎn)DAC中點(diǎn),點(diǎn)E從點(diǎn)C出發(fā)以每秒1個(gè)單位長(zhǎng)度運(yùn)動(dòng)到點(diǎn)O停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t6),連接DE,作DFDEOA于點(diǎn)F,連接EF

1)當(dāng)t的值為   時(shí),四邊形DEOF是矩形;

2)用含t的代數(shù)式表示線段OF的長(zhǎng)度,并說(shuō)明理由;

3)當(dāng)△OEF面積為時(shí),請(qǐng)直接寫(xiě)出直線DE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng),點(diǎn)C在第四象限,∠ACB=90°.點(diǎn)D軸正半軸上一點(diǎn),AC平分∠BAD,EAD的中點(diǎn),反比例函數(shù))的圖象經(jīng)過(guò)點(diǎn)A,E.若△ACE的面積為6,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線yax2+bx+ca0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(40)之間,則下列結(jié)論:4a2b+c0;3a+b0b24acn);一元二次方程ax2+bx+cn1有兩個(gè)互異實(shí)根.其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案