【題目】將一張長方形的紙對折,如圖所示,可得到一條折痕(圖中虛線),繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到7條折痕,
(1)折一折,數一數,連續(xù)對折四次后,可以得到多少條折痕?
(2)想一想,如果對折n次,可以得到多少條折痕?
(3)如果能對折10次,可以得到多少條折痕?
(4)如果對折n次,可以得到多少個一樣大小的小長方形?
【答案】(1)15;(2)2n﹣1;(3)1023;(4)2n.
【解析】
(1)對前三次對折可經發(fā)現每對折1次把紙分成的部分是上一次的2倍,折痕數是所分成的部分數少1,據此可求出第4次的折痕;
(2)根據(1)對折規(guī)律求出對折n次得到的部分數,然后減1即可得到折痕條數;
(3)把n=10代入(2)中的式子即可計算出結果;
(4)對折n次得到的部分數就是小長方形的個數.
解:由圖可知,第1次對折,把紙分成2部分,1條折痕,
第2次對折,把紙分成4部分,3條折痕,
第3次對折,把紙分成8部分,7條折痕,
(1)第4次對折,把紙分成16部分,15條折痕,
(2)依此類推,第n次對折,把紙分成2n部分,2n﹣1條折痕.
(3)第10次對折,把紙分成210部分,210﹣1=1023條折痕;
(4)對折n次,可以得到2n個一樣大小的小長方形
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,①求邊CP的長;②求邊AB的長;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對非負實數x“四舍五入”到個位的值記為< x >,即已知n為正整數,如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…則滿足方程< x >=的非負實數x的值為____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解決下列問題.
(1)[-4.5]=_____;<3.5>=________;
(2)若[x]=2,則x的取值范圍是________;若<y>=-1,則y的取值范圍是_______.
(3)若,則x為_________.
(4)已知x、y滿足方程組,求x、y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(觀察探索)用“<”、“>”或“=”完成以下填空,并觀察兩邊算式,探索規(guī)律:
(猜想證明)請用一個含字母a、b的式子表示上以規(guī)律,并證明結論的正確性;
(應用拓展)比較代數式m2-3mn+1與mn-4n2的大小,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與兩軸分別交于A、B、C三點,已知點A(一3,O),B(1,0).點P在第二象限內的拋物線上運動,作PD上軸子點D,交直線AC于點E.
(1)
(2)過點P作PF⊥AC于點F.求當△PEF的周長取最大值時點P的坐標.
(3)連接AP,并以AP為邊作等腰直角△APQ,當頂點Q恰好落在拋物線的對稱軸上時,求對應的P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com