【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據(jù)這個(gè)規(guī)律,2 025個(gè)點(diǎn)的坐標(biāo)為________.

【答案】(45,0)

【解析】試題解析:觀察圖形可知,到每一橫坐標(biāo)結(jié)束,經(jīng)過(guò)整數(shù)點(diǎn)的點(diǎn)的總個(gè)數(shù)等于最后點(diǎn)的橫坐標(biāo)的平方,并且橫坐標(biāo)是奇數(shù)時(shí)最后以橫坐標(biāo)為該數(shù),縱坐標(biāo)為0結(jié)束,當(dāng)橫坐標(biāo)是偶數(shù)時(shí),以橫坐標(biāo)為1,縱坐標(biāo)為橫坐標(biāo)減1的點(diǎn)結(jié)束,根據(jù)此規(guī)律解答即可:

橫坐標(biāo)為1的點(diǎn)結(jié)束,共有1個(gè),1=12,

橫坐標(biāo)為2的點(diǎn)結(jié)束,共有2個(gè),4=22,

橫坐標(biāo)為3的點(diǎn)結(jié)束,共有9個(gè),9=32,

橫坐標(biāo)為4的點(diǎn)結(jié)束,共有16個(gè),16=42

橫坐標(biāo)為n的點(diǎn)結(jié)束,共有n2個(gè)。

∵452=2025,∴第2025個(gè)點(diǎn)是(45,0)。

故答案為:(45,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CBx軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點(diǎn)E,從E點(diǎn)射出一束光線經(jīng)OA上一點(diǎn)D反射,反射光線DC恰好與OB平行,入射角∠ODE與反射角∠ADC相等,則∠DEB的度數(shù)是( )

A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠C=90°AC=3,BC=4,點(diǎn)DAB的中點(diǎn),點(diǎn)EDC的延長(zhǎng)線上,且CE=CD,過(guò)點(diǎn)BBFDEAE的延長(zhǎng)線于點(diǎn)F,交AC的延長(zhǎng)線于點(diǎn)G

1)求證:AB=BG

2)若點(diǎn)P是直線BG上的一點(diǎn),試確定點(diǎn)P的位置,使BCPBCD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, OAB與ODC是位似圖形 。

試問(wèn):(1)AB與CD平行嗎?請(qǐng)說(shuō)明理由 。

(2)如果OB=3,OC=4,OD=3.5.試求OAB與ODC的相似比及OA的長(zhǎng) 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.

(1)通過(guò)計(jì)算,判斷AD2ACCD的大小關(guān)系;

(2)求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在數(shù)學(xué)課中學(xué)習(xí)了《解直角三角形》的內(nèi)容后,雙休日組織教學(xué)興趣小組的小伙伴進(jìn)行實(shí)地測(cè)量.如圖,他們?cè)谄露仁莍=1:2.5的斜坡DE的D處,測(cè)得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識(shí)很快計(jì)算出了鐵塔高AM.親愛的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請(qǐng)你寫出解答過(guò)程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖1,已知Rt△ABC,AB=BC,AC=2,把一塊含30°角的三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),點(diǎn)CDE點(diǎn)BDF上.

(1)求重疊部分△BCD的面積;

(2)如圖2,將直角三角板DEFD點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)30,DEBC于點(diǎn)M,DFAB于點(diǎn)N.

求證:DM=DN;

在此條件下重疊部分的面積會(huì)發(fā)生變化嗎?若發(fā)生變化,請(qǐng)求出重疊部分的面積若不發(fā)生變化,請(qǐng)說(shuō)明理由;

(3)如圖3,將直角三角板DEFD點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)α(0<α<90),DEBC于點(diǎn)M,DFAB于點(diǎn)N,DM=DN的結(jié)論仍成立嗎?重疊部分的面積會(huì)變嗎?(請(qǐng)直接寫出結(jié)論,不需要說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點(diǎn),弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD=時(shí),四邊形AODC是菱形;
(3)當(dāng)AD=時(shí),四邊形AEDF是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案