【題目】在甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:
甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是______ ,乙成績的平均數(shù)是______ ;
(2)經(jīng)計(jì)算知S甲2=6,S乙2=42.你認(rèn)為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機(jī)抽取一次成績進(jìn)行分析,求抽到的兩個(gè)人的成績都大于80分的概率.
【答案】(1)83, 82; (2)選拔甲參加比賽更合適,理由見解析;(3).
【解析】
(1)根據(jù)平均數(shù)的計(jì)算公式可知,甲成績的平均數(shù)為,乙成績的平均數(shù)為.
(2)方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定。根據(jù)方差的定義判斷即可.
(3)將所有可能發(fā)生的情況列成表格,根據(jù)表格得出所有情況以及出現(xiàn)抽到的兩個(gè)人的成績都大于80的幾種情況,即可求出概率.
(1)==83(分),
==82(分);
(2)選拔甲參加比賽更合適,理由如下:
∵>,且S甲2<S乙2,
∴甲的平均成績高于乙,且甲的成績更穩(wěn)定,
故選拔甲參加比賽更合適.
(3)列表如下:
79 | 86 | 82 | 85 | 83 | |
88 | 88,79 | 88,86 | 88,82 | 88,85 | 88,83 |
79 | 79,79 | 79,86 | 79,82 | 79,85 | 79,83 |
90 | 90,79 | 90,86 | 90,85 | 90,83 | |
81 | 81,79 | 81,86 | 81,82 | 81,85 | 81,83 |
72 | 72,79 | 72,86 | 72,82 | 72,85 | 72,83 |
由表格可知,所有等可能結(jié)果共有25種,其中兩個(gè)人的成績都大于80分有12種,
∴抽到的兩個(gè)人的成績都大于80分的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,分別為兩坐標(biāo)軸上的點(diǎn),且,滿足,且.
(1)求、、三點(diǎn)的坐標(biāo);
(2)若,過點(diǎn)的直線分別交、于、兩點(diǎn),且,設(shè)、兩點(diǎn)的橫坐標(biāo)分別為、,求的值;
(3)如圖2,若,點(diǎn)是軸上點(diǎn)右側(cè)一動(dòng)點(diǎn),于點(diǎn),在上取點(diǎn),使,連接,當(dāng)點(diǎn)在點(diǎn)右側(cè)運(yùn)動(dòng)時(shí),的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示(1<x=h<2,0<xA<1).下列結(jié)論:①2a+b>0;②abc<0; ③若OC=2OA,則2b﹣ac=4; ④3a﹣c<0.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=﹣ x2+mx+m+ .
(1)①無論m取何值,拋物線經(jīng)過定點(diǎn)P;
②隨著m的取值變化,頂點(diǎn)M(x,y)隨之變化,y是x的函數(shù),則其函數(shù)C2關(guān)系式為;
(2)如圖1,若該拋物線C1與x軸僅有一個(gè)公共點(diǎn),請?jiān)趫D1中畫出頂點(diǎn)M滿足的函數(shù)C2的大致圖象,平行于y軸的直線l分別交C1、C2于點(diǎn)A、B,若△PAB為等腰直角三角形,判斷直線l滿足的條件,并說明理由;
(3)如圖2,拋物線C1的頂點(diǎn)M在第二象限,交x軸于另一點(diǎn)C,拋物線上點(diǎn)M與點(diǎn)P之間一點(diǎn)D的橫坐標(biāo)為﹣2,連接PD、CD、CM、DM,若S△PCD=S△MCD , 求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)AB=4,與y軸交于點(diǎn)C,OC=OA,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM,如圖1,點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQNM的周長最大時(shí),求m的值,并求出此時(shí)的△AEM的面積;
(3)已知H(0,﹣1),點(diǎn)G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX=__________°;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是邊的中點(diǎn),以為腰向外作等腰直角三角形,,連接,交于點(diǎn),交于點(diǎn),連接.
(1)若,則 ;
(2)求證: ;
(3)若,則 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com