【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A點(diǎn)出發(fā),沿著AB以每秒4cm的速度向B點(diǎn)運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿著CA以每秒3cm的速度向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x秒.
(1)x為何值時(shí),PQ∥BC;
(2)是否存在某一時(shí)刻,使△APQ∽△CQB?若存在,求出此時(shí)AP的長(zhǎng);若不存在,請(qǐng)說明理由;
(3)當(dāng)=時(shí),求的值.
【答案】(1);(2)cm;(3).
【解析】
試題本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、解方程、兩個(gè)三角形的面積比等于兩個(gè)底的比(這兩底上的高相等)等知識(shí),利用相似三角形的性質(zhì)是解決本題的關(guān)鍵.
(1)當(dāng)PQ∥BC時(shí),根據(jù)平行線分線段成比例定理,可得出關(guān)于AP,PQ,AB,AC的比例關(guān)系式,我們可根據(jù)P,Q的速度,用時(shí)間x表示出AP,AQ,然后根據(jù)得出的關(guān)系式求出x的值.
(2)由△APQ∽△CQB得出=,進(jìn)一步代入求x的值;
(3)當(dāng)時(shí)得出CQ:AC=1:3,那么CQ=10cm,此時(shí)時(shí)間x正好是(1)的結(jié)果,那么此時(shí)PQ∥BC,由此可根據(jù)平行這個(gè)特殊條件,得出三角形APQ和ABC的面積比,然后再根據(jù)三角形PBQ的面積=三角形ABC的面積-三角形APQ的面積-三角形BQC的面積來得出答案即可
試題解析:解:(1)由題意知AP=4x,CQ=3x,
若PQ∥BC,則△APQ∽△ABC,
=,
∵AB=BC=20,AC=30,
∴AQ=30-3x,
∴=,
∴x=,
∴當(dāng)x=時(shí),PQ∥BC.
(2)∵△APQ∽△CQB,則=,
∴=,
∴9x-10x=0,
∴x1=0(舍去).x2=.
∴當(dāng)AP的長(zhǎng)為cm,△APQ∽△CQB;
(3)∵,
∴=,
又∵AC=30,
∴CQ=10,
即3x÷10x=,
此時(shí),AP=4x=,
∴==.
∴==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng).如果點(diǎn)E、F同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s)當(dāng)t=______s時(shí),以A、C、E、F為頂點(diǎn)四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩條線段AC和BC,連接AB,分別以AB、BC為底邊向上畫等腰△ABD和等腰△BCE,∠ADB=∠BEC=α.
(1)如圖1,當(dāng)α=60°時(shí),求證:△DBE≌△ABC;
(2)如圖2,當(dāng)α=90°時(shí),且BC=5,AC=2.
①求DE的長(zhǎng);
②如圖3,將線段CA繞點(diǎn)C旋轉(zhuǎn),點(diǎn)D也隨之運(yùn)動(dòng),請(qǐng)求出C,D兩點(diǎn)之間距離的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,不正確的是( )
A. 直角邊長(zhǎng)分別是6、4和4.5、3的兩個(gè)直角三角形相似 B. 底角為40°的兩個(gè)等腰三角形相似
C. 一個(gè)銳角為30°的兩個(gè)直角三角形相似 D. 有個(gè)角為30°的兩個(gè)等腰三角形相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是_____(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下:
甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | | 8 | 0.4 |
乙 | | 9 | | 3.2 |
(2)教練根據(jù)這5次成績(jī),選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績(jī)的方差 .(填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出 4臺(tái).商場(chǎng)要想在這種冰箱銷售中每天盈利 4800 元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新課程改革十分關(guān)注學(xué)生的社會(huì)實(shí)踐活動(dòng),小明在一次社會(huì)實(shí)踐活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)500戶居民的家庭月人均收入情況,他從中隨機(jī)調(diào)查了40戶居民家庭的“家庭月人均收入情況”(收入取整數(shù),單位:元),并繪制了頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
分組 | 頻數(shù) | 占比 |
1000≤x<2000 | 3 | 7.5% |
2000≤x<3000 | 5 | 12.5% |
3000≤x<4000 | a | 30% |
4000≤x<5000 | 8 | 20% |
5000≤x<6000 | b | c |
6000≤x<7000 | 4 | 10% |
合計(jì) | 40 | 100% |
(1)頻數(shù)分布表中,a= ,b= ,C= ,請(qǐng)根據(jù)題中已有信息補(bǔ)全頻數(shù)分布直方圖;
(2)觀察已繪制的頻數(shù)分布直方圖,可以看出組距是 ,這個(gè)組距選擇得 (填“好”或“不好”),并請(qǐng)說明理由.
(3)如果家庭人均月收入“大于3000元不足6000元”的為中等收入家庭,則用樣本估計(jì)總體中的中等收入家庭大約有 戶.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
【1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段 .
【1】在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
【1】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請(qǐng)說明理由. 若此時(shí)AB=3,BD=,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com