【題目】如圖,有一個直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿∠CAB的角平分線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長嗎?

【答案】CD的長為3cm.

【解析】試題分析:先由勾股定理求AB=10.再用勾股定理從△DEB中建立等量關(guān)系列出方程即可求CD的長.

解:兩直角邊AC=6cm,BC=8cm,

Rt△ABC中,由勾股定理可知AB=10,

現(xiàn)將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD=DE,AE=AC=6

∴BE=10﹣6=4,

設(shè)DE=CD=xBD=8﹣x,

Rt△BDE中,根據(jù)勾股定理得:BD2=DE2+BE2,即(8﹣x2=x2+42,

解得x=3

CD的長為3cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A(-3,2)關(guān)于x軸的對稱點(diǎn)A的坐標(biāo)為( )

A. (-3,-2) B. (3,2) C. (3,-2) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,為正方形的外角的角平分線,點(diǎn)在線段上,過點(diǎn)于點(diǎn),連接,過點(diǎn)于點(diǎn),交射線于點(diǎn)

)如圖1,若點(diǎn)與點(diǎn)重合.

依題意補(bǔ)全圖1.

判斷的數(shù)量關(guān)系并加以證明.

)如圖2,若點(diǎn)恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計(jì)算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫出一個滿足條件的m的值,并求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價格為3/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護(hù)消費(fèi)者利益,物價部門規(guī)定,該品牌粽子售價不能超過進(jìn)價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A(m,﹣n)在第二象限,則點(diǎn)B(﹣m,|n|)在第_____象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清明節(jié)是祭祖和掃墓的日子,據(jù)寧波市民政局社會事務(wù)處的數(shù)據(jù)顯示,今年清明期間全市祭掃人數(shù)超300萬人次,其中的300萬用科學(xué)記數(shù)法表示為(
A.3×105
B.3×106
C.30×105
D.0.3×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的每個外角都等于45°,則它的內(nèi)角和等于(
A.720°
B.1040°
C.1080°
D.540°

查看答案和解析>>

同步練習(xí)冊答案