如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點(diǎn),AB=8cm,則l沿OC所在直線向下平移    cm時(shí)與⊙O相切.
【答案】分析:根據(jù)直線和圓相切,則只需滿足OH=5.又由垂徑定理構(gòu)造直角三角形可求出此時(shí)OH的長,從而計(jì)算出平移的距離.
解答:解:∵直線和圓相切時(shí),OH=5,
又∵在直角三角形OHA中,HA==4,OA=5,
∴OH=3.
∴需要平移5-3=2cm.故答案為:2.
點(diǎn)評:本題考查垂徑定理及直線和圓的位置關(guān)系.注意:直線和圓相切,則應(yīng)滿足d=R.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點(diǎn),AB=8cm,則l沿OC所在直線向下平移與⊙O相切時(shí),移動(dòng)的距離應(yīng)等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,⊙O的半徑OC=5cm,直線l⊥OC,垂足為H,且l交⊙O于A、B兩點(diǎn),AB=8cm,若l要與⊙O相切,則要沿OC所在直線向下平移( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O的半徑OC垂直弦AB于點(diǎn)H,連接BC,過點(diǎn)A作弦AE∥BC,過點(diǎn)C作CD∥BA交精英家教網(wǎng)EA延長線于點(diǎn)D,延長CO交AE于點(diǎn)F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A、B兩點(diǎn),AB=16cm,則直線l平移
4或16
4或16
厘米時(shí)能與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑OC與直徑AB垂直,點(diǎn)P在OB上,CP的延長線交⊙O于點(diǎn)D,在OB的延長線上取點(diǎn)E,使ED=EP.
(1)求證:ED是⊙O的切線;
(2)當(dāng)OC=2,ED=2時(shí),求∠E的正切值tanE和圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案