【題目】國際上通常用恩格爾系數(shù)(記作n)來衡量一個國家和地區(qū)人民的生活水平的狀況,它的計算公式:n=x/y(x:家庭食品支出總額;y:家庭消費支出總額).各種家庭類型的n如下表:

已知王先生居住地2008年比2003年食品價格上升了25%,該家庭在2008年購買食品和2003年完全相同的情況下多支出2000元,并且y=2x+3600(單位:元),則該家庭2003年屬于( 。

家庭類型

貧困

溫飽

小康

富裕

n

n>60%

50%<n≤60%

40%<n≤50%

30%<n≤40%

A. 貧困 B. 溫飽 C. 小康 D. 富裕

【答案】C

【解析】

設王先生2003年的收入y1=2x+3600,2008年的收入y2=2(x+2000)+3600=2x+7600,設2003年食品價格為a元,則2008年食品價格為(1+25%)a元,根據(jù)統(tǒng)計表計算即可解題.

由題可知:王先生2003年的收入y1=2x+3600,2008年的收入y2=2(x+2000)+3600=2x+7600,設2003年食品價格為a元,則2008年食品價格為(1+25%)a元,

=,解得x=8000,y1=19600,y2=23600,

∴2003年的恩格爾系數(shù)為:n===41%,

屬于小康水平,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.

1)在你學過的特殊四邊形中,寫出兩種勾股四邊形的名稱;

2)如圖,將△ABC繞頂點B按順時針方向旋轉60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°

求證:△BCE是等邊三角形;

求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在邊AB上的點D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD⊙O的內接四邊形,AC⊙O的直徑,DE⊥AB,垂足為E.

(1)延長DE⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;

(2)過點BBG⊥AD,垂足為G,BGDE于點H,且點O和點A都在DE的左側,如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使SABM=,過點BBNAM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了深化改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調查了本校各年級部分學生選擇社團的意向,并將調查結果繪制成如下統(tǒng)計圖表(不完整):

某校被調查學生選擇社團意向統(tǒng)計表

選擇意向

所占百分比

文學鑒賞

a

科學實驗

35%

音樂舞蹈

b

手工編織

10%

其他

c

根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求本次調查的學生總人數(shù)及a,b,c的值;

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列格式, - , ,

(1)化簡以上各式,并計算出結果;

(2)以上格式的結果存在一定的規(guī)律,請按規(guī)律寫出第5個式子及結果.

(3)用含n(n≥1的整數(shù))的式子寫出第n個式子及結果,并給出證明的過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對角線.

(1)BD的垂直平分線EF,分別交ADBC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,邊長為6DBC邊上的動點,∠EDF=60°

1)求證:BDE∽△CFD;

2)當BD=1,CF=3時,求BE的長.

查看答案和解析>>

同步練習冊答案