如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(biāo)(用含的代數(shù)式表示),兩點的坐標(biāo);
(2)經(jīng)探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

解析試題分析:(1)將拋物線的解析式化為頂點坐標(biāo)式,即可得到頂點M的坐標(biāo);拋物線的解析式中,令y=0,可求得A、B的坐標(biāo).
(2)易求得C點坐標(biāo),即可得到OC的長,以AB為底,OC為高,即可求出△ABC的面積;△BCM的面積無法直接求得,可用割補法求解,過M作MD⊥x軸于D,根據(jù)B、C、M四點坐標(biāo),可分別求出梯形OCMD、△BDM的面積,它們的面積和減去△BOC的面積即為△BCM的面積,進而可得到△ABC、△BCM的面積比.
(3)首先根據(jù)B、C、M的坐標(biāo),求出BC2、BM2、CM2的值,由于△BCM中,B、C、M都有可能是直角頂點,所以要分三種情況討論:①∠BCM=90°,②∠BMC=90°,③∠MBC=90°,在上述三種不同的直角三角形中,利用勾股定理可求得m的值,進而可確定拋物線的解析式.
(1)
拋物線頂點的坐標(biāo)為(1,m)
拋物線軸交于兩點,
當(dāng)時,

解得
兩點的坐標(biāo)為()、();
(2)當(dāng)時,,
的坐標(biāo)為.
5分
過點軸于點,則



=
=
=3m

(3)存在使為直角三角形的拋物線.
過點于點,則,


中,
中,
①如果,且那么

解得,

存在拋物線使得;
②如果,且那么

解得,

存在拋物線,使得;
③如果,且,那么

整理得此方程無解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當(dāng)的面積最大時,求點的坐標(biāo);

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標(biāo),

若不存在,請說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于兩點,與軸相交于點.連結(jié)AC、BC,B、C兩點的坐標(biāo)分別為B(1,0)、,且當(dāng)x=-10和x=8時函數(shù)的值相等.

 

 

1.求a、b、c的值;

2.若點同時從點出發(fā),均以每秒1個單位長度的速度分別沿邊運動,其中一個點到達(dá)終點時,另一點也隨之停止運動.連結(jié),將沿翻折,當(dāng)運動時間為幾秒時,點恰好落在邊上的處?并求點的坐標(biāo)及四邊形的面積;

3.上下平移該拋物線得到新的拋物線,設(shè)新拋物線的頂點為D,對稱軸與x軸的交點為E,若△ODE與△OBC相似,求新拋物線的解析式。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸交于A、B兩點,與軸交于C點,四邊形OBHC為矩形,CH的延長線交拋物線于點D(5,2),連結(jié)BC、AD.

(1)求C點的坐標(biāo)及拋物線的解析式;

(2)將△BCH繞點B按順時針旋轉(zhuǎn)90º后再沿軸對折得到△BEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;

(3)設(shè)過點E的直線交AB邊于點P,交CD邊于點Q. 問是否存在點P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點坐標(biāo);若不存在,請說明理由.                                                                                     

       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆仙師中學(xué)九年級第一次月考試考試數(shù)學(xué)卷 題型:選擇題

如圖,拋物線與軸交于,0)、,0)兩點,且,與軸交于點,其中是方程的兩個根。(14分)

(1)求拋物線的解析式;

(2)點是線段上的一個動點,過點,交于點,連接,當(dāng)的面積最大時,求點的坐標(biāo);

(3)點在(1)中拋物線上,

為拋物線上一動點,在軸上是

否存在點,使以為頂

點的四邊形是平行四邊形,如果存在,

求出所有滿足條件的點的坐標(biāo),

若不存在,請說明理由。

 

 

查看答案和解析>>

同步練習(xí)冊答案