【題目】如圖,在正方形中,點(diǎn)是邊上的一動(dòng)點(diǎn),點(diǎn)是上一點(diǎn),且,、相交于點(diǎn).
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
【答案】(1)見(jiàn)解析;(2)∠AGD=90°;(3).
【解析】
(1)直接利用正方形的性質(zhì)得到AD=DC,∠ADF=∠DCE,,結(jié)合全等三角形的判定方法得出答案;
(2)根據(jù)∠DAF=∠CDE和余角的性質(zhì)可得∠AGD=90°;
(3)利用全等三角形的判定和性質(zhì)得出△ABH≌△ADG(AAS),即可得出的值.
(1)證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADF=∠DCE=90°,
在△ADF和△DCE中
;
∴△ADF≌△DCE(SAS);
(2)解:由(1)得△ADF≌△DCE,
∴∠DAF=∠CDE,
∵∠ADG+∠CDE=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
(3)過(guò)點(diǎn)B作BH⊥AG于H
∵BH⊥AG,
∴∠BHA=90°,
∴∠BHA=∠AGD,
∵四邊形ABCD是正方形,
∴AB=AD=BC,∠BAD=90°,
∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
∴∠ABH=∠DAG,
在△ABH和△ADG中
,
∴△ABH≌△ADG(AAS),
∴AH=DG,
∵BG=BC,BA=BC,
∴BA=BG,
∴AH=AG,
∴DG=AG,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)C作直線(xiàn)l垂直于射線(xiàn)AM,垂足為點(diǎn)D.
(1)試判斷CD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若直線(xiàn)l與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點(diǎn)C與公路上的?空A的距離為300米,與公路上的另一?空B的距離為400米,且CA⊥CB,如圖所示,為了安全起見(jiàn),爆破點(diǎn)C周?chē)霃?/span>250米范圍內(nèi)不得進(jìn)入,問(wèn):在進(jìn)行爆破時(shí),公路AB段是否有危險(xiǎn)?是否需要暫時(shí)封鎖?請(qǐng)用你學(xué)過(guò)的知識(shí)加以解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了了解在校初中生閱讀數(shù)學(xué)教科書(shū)的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成不完整的統(tǒng)計(jì)表,請(qǐng)根據(jù)圖表中的信息解答下列問(wèn)題.
(1)樣本容量為 ,表格中c的值為 ,并補(bǔ)全統(tǒng)計(jì)圖;
(2)若該校共有初中生2300名,請(qǐng)估計(jì)該校“不重視閱讀數(shù)學(xué)教科書(shū)”的初中人數(shù)為 ;
(3)根據(jù)上面的數(shù)據(jù)統(tǒng)計(jì)結(jié)果,談?wù)勀銓?duì)該校初中生閱讀數(shù)學(xué)教科書(shū)的現(xiàn)狀的看法及建議;如果要了解全省初中生閱讀數(shù)學(xué)教科書(shū)的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,“和諧號(hào)”高鐵列車(chē)的小桌板收起時(shí),小桌板的支架底端與桌面頂端的距離OA=75厘米,且可以近似看作與地面垂直.展開(kāi)小桌板使桌面保持水平,此時(shí)CB⊥AO,∠AOB=∠ACB=37°,且支架長(zhǎng)OB與桌面寬BC的長(zhǎng)度之和等于OA的長(zhǎng)度.求小桌板桌面的寬度BC.(參考數(shù)據(jù), , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)、分別是正方形的邊、上的點(diǎn),且,、相交于點(diǎn),下列結(jié)論:①;②;③,其中一定正確的有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明.
如圖、與互補(bǔ),,求證:.對(duì)于本題小麗是這樣證明的,請(qǐng)你將她的證明過(guò)程補(bǔ)充完整.
證明:與互補(bǔ),(已知)
.(________________________________)
.(________________________________)
,(已知)
,(等量代換)
即_______________=_______________.
.(________________________________)
.(________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將函數(shù)y=x2﹣2x(x≥0)的圖象沿y軸翻折得到一個(gè)新的圖象,前后兩個(gè)圖象其實(shí)就是函數(shù)y=x2﹣2|x|的圖象.
(1)觀察思考
函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根;關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 ;
(2)拓展探究
①如圖2,將直線(xiàn)y=x+1向下平移b個(gè)單位,與y=x2﹣2|x|的圖象有三個(gè)交點(diǎn),求b的值;
②如圖3,將直線(xiàn)y=kx(k>0)繞著原點(diǎn)旋轉(zhuǎn),與y=x2﹣2|x|的圖象交于A、B兩點(diǎn)(A左B右),直線(xiàn)x=1上有一點(diǎn)P,在直線(xiàn)y=kx(k>0)旋轉(zhuǎn)的過(guò)程中,是否存在某一時(shí)刻,△PAB是一個(gè)以AB為斜邊的等腰直角三角形(點(diǎn)P、A、B按順時(shí)針?lè)较蚺帕校舸嬖?/span>,請(qǐng)求出k值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類(lèi)及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com