【題目】如圖,將函數(shù)y=x2﹣2x(x≥0)的圖象沿y軸翻折得到一個新的圖象,前后兩個圖象其實(shí)就是函數(shù)y=x2﹣2|x|的圖象.
(1)觀察思考
函數(shù)圖象與x軸有 個交點(diǎn),所以對應(yīng)的方程x2﹣2|x|=0有 個實(shí)數(shù)根;方程x2﹣2|x|=2有 個實(shí)數(shù)根;關(guān)于x的方程x2﹣2|x|=a有4個實(shí)數(shù)根時,a的取值范圍是 ;
(2)拓展探究
①如圖2,將直線y=x+1向下平移b個單位,與y=x2﹣2|x|的圖象有三個交點(diǎn),求b的值;
②如圖3,將直線y=kx(k>0)繞著原點(diǎn)旋轉(zhuǎn),與y=x2﹣2|x|的圖象交于A、B兩點(diǎn)(A左B右),直線x=1上有一點(diǎn)P,在直線y=kx(k>0)旋轉(zhuǎn)的過程中,是否存在某一時刻,△PAB是一個以AB為斜邊的等腰直角三角形(點(diǎn)P、A、B按順時針方向排列).若存在,請求出k值;若不存在,請說明理由.
【答案】(1)3,3,2,﹣1<a<0;(2)①1或;②k=.
【解析】試題分析:(1)|x|圖象關(guān)于x軸對稱.(2) 當(dāng)直線y=x+1﹣b經(jīng)過原點(diǎn)或與拋物線y=x2+2x只有一個交點(diǎn)時,與y=x2﹣2|x|的圖象有三個交點(diǎn),聯(lián)立方程組可得b的值(3). 作BE⊥直線x=1于E,AF⊥直線x=1于F,證明△PAF≌△BPE,聯(lián)立二次函數(shù)和一次函數(shù)解方程求k的值.
試題解析:
解:(1)函數(shù)y=x2﹣2|x|的圖象與x軸交于點(diǎn)(﹣2,0),(0,0),(2,0),有3個交點(diǎn),∴方程x2﹣2|x|=0有3實(shí)數(shù)根,
觀察圖象可知方程x2﹣2|x|=2有2實(shí)數(shù)根,
關(guān)于x的方程x2﹣2|x|=a有4個實(shí)數(shù)根時,a的取值范圍是﹣1<a<0.
故答案為:3,3,2,﹣1<a<0.
(2)①設(shè)平移后的直線的解析式為y=x+1﹣b,觀察圖象可知,當(dāng)直線y=x+1﹣b經(jīng)過原點(diǎn)或與拋物線y=x2+2x只有一個交點(diǎn)時,與y=x2﹣2|x|的圖象有三個交點(diǎn),∴1﹣b=0,b=1,由消去y得到x2+x﹣1+b=0,由題意△=0,∴1﹣4(﹣1+b)=0,∴b= ,綜上所述,滿足條件的b的值為1或.
(3)如圖3中,作BE⊥直線x=1于E,AF⊥直線x=1于F.
∵∠AFP=∠PEB=∠APB=90°,∴∠APF+∠PAF=90°,∠APF+∠BPE=90°,
∴∠PAF=∠BPE,∵PA=PB,∴△PAF≌△BPE,∴AF=PE,PF=BE,
由,解得 或,
∴A[k﹣2,k(k﹣2)],由,解得 或,
∴B[k+2,k(k+2)],∴BE=PF=k+1,AF=PE=3﹣k,∴P(1,k2﹣3k﹣1),∴k2+2k﹣(k2﹣3k﹣1)=3﹣k,∴k=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識,傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識競賽,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎的學(xué)生人數(shù);
(2)在本次知識競賽活動中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)是邊上的一動點(diǎn),點(diǎn)是上一點(diǎn),且,、相交于點(diǎn).
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠B=90°,對角線AC的垂直平分線與邊AD、BC分別相交于點(diǎn)E、F.
(1)求證:四邊形AFCE是菱形;
(2)若AB=6,BC=8,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)牛場原有大牛30頭和小牛15頭,一天約用飼料675kg.一周后又購進(jìn)12頭大牛和5頭小牛,這時1天約用飼料940kg.飼養(yǎng)員李大叔估計(jì)每頭大牛1天約需飼料1820kg,每頭小牛1天約需飼料78kg,你能通過計(jì)算檢驗(yàn)他的估計(jì)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】望江中學(xué)為了解學(xué)生平均每天“誦讀經(jīng)典”的時間,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì),并將調(diào)查統(tǒng)計(jì)的結(jié)果分為以下四類:每天誦讀時間t≤20分鐘的學(xué)生記為A類,20分鐘<t≤40分鐘的學(xué)生記為B類,40分鐘<t≤60分鐘的學(xué)生記為C類,t>60分鐘的學(xué)生記為D類.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)m=________%,n=________%,這次共抽取了________名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì);
(2)請補(bǔ)全上面的條形圖;
(3)如果該校共有1200名學(xué)生,請你估計(jì)該校C類學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(-1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時,點(diǎn)Q停止運(yùn)動,這時,在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請求出E點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請判定此時四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com