精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在梯形ABCD中,,上底AD,以對角線BD為直徑的CD切于點D,與BC交于點E,且,則圖中陰影部分的面積為____.(結果保留根號)

【答案】

【解析】

連接OE,根據∠ABC=90°AD=,∠ABD30°,可得出ABBD,可證明△OBE為等邊三角形,即可得出∠C=30°.陰影部分的面積為直角梯形ABCD的面積-ABD的面積-OBE的面積-扇形ODE的面積.

連接OE,過點OOFBE于點F.

∵∠ABC=90°,,AD=,ABD=30°

BD=2,AB=3,AB是直徑

OB=OE,∠DBC=60°,OFBE

OF=,

CD為⊙O的切線,

∴∠BDC=90°,

∴∠C=30°,

BC=4,

故答案為.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+bx+c(a≠0,a,b,c為常數)圖象如圖所示,根據圖象解答問題.

(1)寫出過程ax2+bx+c=0的兩個根.

(2)寫出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有兩個不相等的實數根,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嘉淇正在參加全國數學競賽,只要他再答對最后兩道單選題就能順利過關,其中第一道題有3個選項,第二道題有4個選項,而這兩道題嘉淇都不會,不過嘉淇還有一次求助沒有使用(使用求助可讓主持人去掉其中一題的一個錯誤選項).

1)如果嘉淇第一題不使用求助,隨機選擇一個選項,那么嘉淇答對第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請用畫樹狀圖或列表法求嘉淇能順利過關的概率;

3)請你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過關的概率較大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AE平分∠BACBC于點E,OAB上一點,經過A,E兩點的⊙OAB于點D,連接DE,作∠DEA的平分線EF交⊙O于點F,連接AF.

(1)求證:BC是⊙O的切線;

(2)sinEFA=,AF=,求線段AC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AC ABCD的對角線,延長BA至點E,使AE=AB,連接DE.

(1)求證:四邊形ACDE是平行四邊形;

(2)連接ECAD于點O,若∠EOD=2B,求證:四邊形ACDE是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C90°,以 BC 為直徑的O AB 于點 D,過點 D 作∠ADE=∠A,交 AC 于點 E

1)求證:DE O 的切線;

2)若 ,BC=15cm,求 DE 的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點,分別在正方形的邊,上,且,點在射線上(點不與點重合).將線段繞點順時針旋轉得到線段,過點的垂線,垂足為點,交射線于點

1)如圖1,若點的中點,點在線段上,線段,的數量關系為  

2)如圖2,若點不是的中點,點在線段上,判斷(1)中的結論是否仍然成立.若成立,請寫出證明過程;若不成立,請說明理由.

3)正方形的邊長為6,,請直接寫出線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數的圖象如圖所示,則下列結論:;②;③;④;⑤的解為,其中正確的有(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】工廠對某種新型材料進行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內方可加工,如圖是在這種材料的加工過程中,該材料的溫度y)時間xmin)變化的數圖象,已知該材料,初始溫度為15℃,在溫度上升階段,yx成一次函數關系,在第5分鐘溫度達到60℃后停止加溫,在溫度下降階段,yx成反比例關系.

1)寫出該材料溫度上升和下降階段,yx的函數關系式:

①上升階段:當0≤x≤5時,y   ;

②下降階段:當x5時,y   

2)根據工藝要求,當材料的溫度不低于30℃,可以進行產品加工,請問在圖中所示的溫度變化過程中,可以進行加工多長時間?

查看答案和解析>>

同步練習冊答案