【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)若BC4,求DE的長.

【答案】(1)見解析;(2).

【解析】

1)連接OD,由平行線的判定定理可得ODAC,利用平行線的性質(zhì)得∠ODE=∠DEA90°,可得DE為⊙O的切線;

2)連接CD,由BC為直徑,利用圓周角定理可得∠ADC90°,由∠A30°,ACBC4,利用銳角三角函數(shù)可得DE

1)證明:連接OD,

ODOB

∴∠ODBB,

ACBC,

∴∠AB,

∴∠ODBA,

ODAC,

∴∠ODEDEA90°,

DEO的切線;

2)解:連接CD,

BC為直徑,

∴∠ADC90°,

∵∠A30°,

ACBC4,

ADACcos30°2,

DEAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進(jìn)行了為期一個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中課前預(yù)習(xí)不達(dá)標(biāo)對應(yīng)的圓心角度數(shù)是   ;

3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC、CD分別與⊙O切于E、F、G,且ABCD.連接OB、OC,延長CO交⊙O于點(diǎn)M,過點(diǎn)MMNOBCDN

1)求證:MN是⊙O的切線;

2)當(dāng)OB6cmOC8cm時(shí),求⊙O的半徑及MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,


1)求拋物線的解析式;
2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙11”期間,新華商場銷售某種冰箱,每臺進(jìn)價(jià)為3000元,調(diào)查發(fā)現(xiàn),當(dāng)銷售價(jià)為3600元時(shí),平均每天能售出16臺,而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4. 假設(shè)每臺冰箱降價(jià)元(x50的整數(shù)倍,0<x<600.

1直接寫出平均每天商場銷售冰箱的數(shù)量y(臺)與x(元)之間的關(guān)系;

2要想這種冰箱的銷售利潤平均每天達(dá)到12800元,每臺冰箱的定價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對角線的交點(diǎn),作,,DECE相交于點(diǎn)E.求證:

1)四邊形OCED是菱形;

2)連接OE.若,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會.某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.

1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?

3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補(bǔ)貼mm≤40)元.在獲得國家每件m元補(bǔ)貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是ABBC邊上的點(diǎn),且∠EDF=45°,將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM

(1)求證:EF=MF

(2)AE=2,求FC的長.

查看答案和解析>>

同步練習(xí)冊答案