【題目】如圖,在Rt△ABC中,∠ACB=90°,AC、BC的長為方程x2﹣14x+a=0的兩根,且AC﹣BC=2,D為AB的中點.
(1)求a的值.
(2)動點P從點A出發(fā),以每秒2個單位的速度,沿A→D→C的路線向點C運動;動點Q從點B出發(fā),以每秒3個單位的速度,沿B→C的路線向點C運動,且點Q每運動1秒,就停止2秒,然后再運動1秒…若點P、Q同時出發(fā),當其中有一點到達終點時整個運動隨之結束.設運動時間為t秒.
①在整個運動過程中,設△PCQ的面積為S,試求S與t之間的函數(shù)關系式;并指出自變量t的取值范圍;
②是否存在這樣的t,使得△PCQ為直角三角形?若存在,請直接寫出所有符合條件的t的值.
【答案】(1)48;(2)① S=t2﹣t+24(0<t≤1)或S=﹣t+12(1<t≤2.5)或S=﹣t+12(2.5<t≤3)或S=t2﹣t+48(3<t<4);②2.5秒,秒
【解析】
(1)根據(jù)根與系數(shù)的關系求出AC+BC=14,求出AC和BC,即可求出答案;
(2)根據(jù)勾股定理求出AB,sinB,過C作CE⊥AB于E,關鍵三角形的面積公式求出CE,I當0<t≤1時,
求出即可;II同理可求:當1<t≤2.5時, ;Ⅲ當2.5<t≤3時, ;IV當3<t<4時
②在整個運動過程中,只可能∠PQC=90°,當P在AD上時,若∠PQC=90°,,代入即可求出t;當P在DC上時,若∠PQC=90°,sinA=sin∠CPQ, 得到 或 ,求出t,根據(jù)t的范圍1<t<4,判斷即可.
(1)∵AC、BC的長為方程x2﹣14x+a=0的兩根,
∴AC+BC=14,
又∵AC﹣BC=2,
∴AC=8,BC=6,
∴a=8×6=48,
答:a的值是48.
(2)∵∠ACB=90°
∴
又∵D為AB的中點
∴
∵
過C作CE⊥AB于E,
根據(jù)三角形的面積公式得:
6×8=10CE
解得
過P作PK⊥BQ于K,
∵
∴
∴
(I)當0<t≤1時,
(II)同理可求:當1<t≤2.5時,
(III)當2.5<t≤3時
(IV)當3<t<4時
∵△PHC∽△BCA
∴
∴
∴PH=8-1.6t
∴
答:S與t之間的函數(shù)關系式是:
或
或
或
② 解:在整個運動過程中,只可能∠PQC=90°
當P在AD上時,若∠PQC=90°,
∴
∴t=2.5
當P在DC上時,若∠PQC=90°
sinA=sin∠CPQ
或
或t=2.5
∵1<t<4
∴t=2.5秒或秒時,△PCQ為直角三角形
答:存在這樣的t,使得△PCQ為直角三角形,符合條件的t的值是2.5秒, 秒
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸的兩個交點分別為A(-3,0)、B(1,0),與y軸交于點D(0,3),過頂點C作CH⊥x軸于點H.
(1)求拋物線的解析式和頂點C的坐標;
(2)連結AD、CD,若點E為拋物線上一動點(點E與頂點C不重合),當△ADE與△ACD面積相等時,求點E的坐標;
(3)若點P為拋物線上一動點(點P與頂點C不重合),過點P向CD所在的直線作垂線,垂足為點Q,以P、C、Q為頂點的三角形與△ACH相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AD=CD,點E在AB上,∠B=2∠AED,CF⊥ED,若CF=,BE+BC=,則EC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,手機已經(jīng)成了我們生活中密不可分的一部分,為了解中學生在平時使用手機的情況(選項:A.和同學親友聊天;B.學習查找資料;C.游戲娛樂;D.其他),某中學在全校范圍內(nèi)隨機抽取了若干名學生進行調(diào)查,要求每名學生必須且只能選擇其中一項,并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息解答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)若該中學共有名學生,請你估計該中學利用手機學習查找資料的學生有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在33的正方形網(wǎng)格中,點A、B、C、D、E、F都是格點.
(1)從A、D、E、F四點中任意取一點,以所取點及B、C為頂點畫三角形,那么所畫三角形是等腰三角形的概率是 .
(2)從A、D、E、F四點中任意取兩點,以所取兩點及B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率.(請用“畫樹狀圖”或“列表”等方式寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線經(jīng)過的頂點和的中點,軸,點的坐標為.
(1)確定的值;
(2)若點在雙曲線上,求直線的解析式;
(3)計算的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計,現(xiàn)從該校隨機抽取n名學生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)參與問卷調(diào)查的每名學生只能選擇其中一項,并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:
補全條形統(tǒng)計圖;
若該校共有學生2400名,試估計該校喜愛看電視的學生人數(shù).
若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x+m)(x﹣4)(m>0)交x軸于點A、B(A左B右),交y軸于點C,過點B的直線y=x+b交y軸于點D.
(1)求點D的坐標;
(2)把直線BD沿x軸翻折,交拋物線第二象限圖象上一點E,過點E作x軸垂線,垂足為點F,求AF的長;
(3)在(2)的條件下,點P為拋物線上一點,若四邊形BDEP為平行四邊形,求m的值及點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,拋物線 y ax2 bx +3a (a≠0)過點 A(1,0).
(1)求拋物線的對稱軸;
(2)直線 y=-x+4 與 y 軸交于點 B,與該拋物線的對稱軸交于點 C,現(xiàn)將點 B 向左平移 一個單位到點 D,如果該拋物線與線段 CD有交點,結合函數(shù)的圖象,求 a 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com