【題目】如圖,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,C點表示數(shù)c,且a、c滿足|a+3|+(c﹣9)2=0.
(1)a= ,c= ;
(2)如圖所示,在(1)的條件下,若點A與點B之間的距離表示為AB=|a﹣b|,點B與點C之間的距離表示為BC=|b﹣c|,點B在點A、C之間,且滿足BC=2AB,則b= ;
(3)在(1)(2)的條件下,若點P為數(shù)軸上一動點,其對應(yīng)的數(shù)為x,當(dāng)代數(shù)式|x﹣a|+|x﹣b|+|x﹣c|取得最小值時,此時x= ,最小值為 ;
(4)在(1)(2)的條件下,若在點B處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點C處以2個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒),請表示出甲、乙兩小球之間的距離d(用t的代數(shù)式表示).
【答案】(1)a=﹣3,c=9;
(2)b=1;
(3)當(dāng)x=b=1時,最小值為12;
(4)當(dāng)t不超過4秒(或表述為0≤t≤4或4秒以前),d=12﹣t;
當(dāng)t超過4秒(或表述為t>4或4秒以后),d=3t﹣4.
【解析】試題分析:(1)根據(jù)非負數(shù)的性質(zhì)求得a=﹣3,c=9;(2)根據(jù)BC=2AB得|c﹣b|=2|b﹣a|,代入數(shù)據(jù)求b即可;(3)當(dāng)P與點B重合時,即當(dāng)x=b時,|x﹣a|+|x﹣b|+|x﹣c|取得最小值;(4)分當(dāng)0<t≤4時,當(dāng)t>4時,表示出甲、乙兩小球之間的距離d即可.
試題解析:
(1)∵|a+3|+(c﹣9)2=0,
∴a+3=0,c﹣9=0,
解得,a=﹣3,c=9;
(2)數(shù)軸上點B表示的數(shù)為b.
∵BC=2AB,
∴|c﹣b|=2|b﹣a|,
即9﹣b=2[b﹣(﹣3)]
解得:b=1;
(3)當(dāng)x=b=1時,
|x﹣a|+|x﹣b|+|x﹣c|=|x﹣(﹣3)|+|x﹣1|+|x﹣9|=12,為最小值;
(4)當(dāng)t不超過4秒(或表述為0≤t≤4或4秒以前),d=12﹣t;
當(dāng)t超過4秒(或表述為t>4或4秒以后),d=3t﹣4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx-2與x軸交于A、B兩點, 與y軸交于C點,且A(一1,0).
⑴求拋物線的解析式及頂點D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點M(m,0)是x軸上的一個動點,當(dāng)CM+DM的值最小時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在課外學(xué)習(xí)時遇到這樣一個問題:
定義:如果二次函數(shù)與滿足,,,則稱這兩個函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)可知,,,,根據(jù),,,求出,,,就能確定這個函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請參考小明的方法解決下面問題:
(1)直接寫出函數(shù)的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)與互為“旋轉(zhuǎn)函數(shù)”,求的值;
(3)已知函數(shù)的圖象與軸交于點A、B兩點(A在B的左邊),與軸交于點C,點A、B、C關(guān)于原點的對稱點分別是A1,B1,C1,試證明經(jīng)過點A1,B1,C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點,∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點P位于的什么位置時,四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當(dāng)有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(是常數(shù)).
(1)、求證:不論為何值,該函數(shù)的圖象與x軸沒有公共點;
(2)、把該函數(shù)的圖象沿軸向下平移多少個單位長度后,得到的函數(shù)的圖象與軸只有一個公共點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com