【題目】
如圖,△ABC中,AC=BC=10,cosC=,點(diǎn)P是AC邊上一動(dòng)點(diǎn)(不與點(diǎn)A、C重合),以PA長(zhǎng)為半徑的⊙P與邊AB的另一個(gè)交點(diǎn)為D,過(guò)點(diǎn)D作DE⊥CB于點(diǎn)E.
(1)當(dāng)⊙P與邊BC相切時(shí),求⊙P的半徑.
(2)連接BP交DE于點(diǎn)F,設(shè)AP的長(zhǎng)為x,PF的長(zhǎng)為y,求y關(guān)于x的函數(shù)解析式,并直接寫(xiě)出x的取值范圍.
(3)在(2)的條件下,當(dāng)以PE長(zhǎng)為直徑的⊙Q與⊙P相交于AC邊上的點(diǎn)G時(shí),求相交所得的公共弦的長(zhǎng).
【答案】(1);(2);(3).
【解析】
(1)設(shè)⊙P與邊BC相切的切點(diǎn)為H,圓的半徑為R,連接HP,則HP⊥BC,cosC=,則sinC=,sinC===,即可求解;
(2)首先證明PD∥BE,則,即:,即可求解;
(3)證明四邊形PDBE為平行四邊形,則AG=EP=BD,即:AB=DB+AD=AG+AD=4,即可求解.
(1)設(shè)⊙P與邊BC相切的切點(diǎn)為H,圓的半徑為R,
連接HP,則HP⊥BC,cosC=,則sinC=,
sinC===,解得:R=;
(2)在△ABC中,AC=BC=10,cosC=,
設(shè)AP=PD=x,∠A=∠ABC=β,過(guò)點(diǎn)B作BH⊥AC,
則BH=ACsinC=8,
同理可得:CH=6,HA=4,AB=4,則:tan∠CAB=2,
BP==,
DA=x,則BD=4﹣x,
如下圖所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,則cosβ=,sinβ=,
EB=BDcosβ=(4﹣x)×=4﹣x,
∴PD∥BE,
∴,即:,
整理得:y=;
(3)以EP為直徑作圓Q如下圖所示,
兩個(gè)圓交于點(diǎn)G,則PG=PQ,即兩個(gè)圓的半徑相等,則兩圓另外一個(gè)交點(diǎn)為D,
GD為相交所得的公共弦,
∵點(diǎn)Q是弧GD的中點(diǎn),
∴DG⊥EP,
∵AG是圓P的直徑,
∴∠GDA=90°,
∴EP∥BD,
由(2)知,PD∥BC,∴四邊形PDBE為平行四邊形,
∴AG=EP=BD,
∴AB=DB+AD=AG+AD=4,
設(shè)圓的半徑為r,在△ADG中,
AD=2rcosβ=,DG=,AG=2r,
+2r=4,解得:2r=,
則:DG==50﹣10,
相交所得的公共弦的長(zhǎng)為50﹣10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫(huà)出△ABC左平移4個(gè)單位得到的△A1B1C1,且A1的坐標(biāo)為 ;
(2)畫(huà)出△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為推動(dòng)“時(shí)刻聽(tīng)黨話 永遠(yuǎn)跟黨走”校園主題教育活動(dòng),計(jì)劃開(kāi)展四項(xiàng)活動(dòng):A:黨史演講比賽,B:黨史手抄報(bào)比賽,C:黨史知識(shí)競(jìng)賽,D:紅色歌詠比賽.校團(tuán)委對(duì)學(xué)生最喜歡的一項(xiàng)活動(dòng)進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將圖1的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知在被調(diào)查的最喜歡“黨史知識(shí)競(jìng)賽”項(xiàng)目的4個(gè)學(xué)生中只有1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生參加該項(xiàng)目比賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出恰好抽到一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一筆直的海岸線上有A、B兩個(gè)碼頭,A在B的正東方向,一艘小船從A碼頭沿北偏西60°的方向行駛了30海里到達(dá)點(diǎn)P處,此時(shí)從B碼頭測(cè)得小船在北偏東45°的方向.求此時(shí)小船到B碼頭的距離(即BP的長(zhǎng))和A、B兩個(gè)碼頭間的距離(結(jié)果都保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)學(xué)生共人,為了解這個(gè)年級(jí)學(xué)生的體能,從中抽取名學(xué)生進(jìn)行分鐘的跳繩測(cè)試,結(jié)果統(tǒng)計(jì)的頻率分布如圖所示,其中從左至右前四個(gè)小長(zhǎng)方形的高依次為 ,如果跳繩次數(shù)不少于次為優(yōu)秀,根據(jù)這次抽查的結(jié)果,估計(jì)全年級(jí)達(dá)到跳繩優(yōu)秀的人數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】O為等邊△ABC所在平面內(nèi)一點(diǎn),若△OAB、△OBC、△OAC都為等腰三角形,則這樣的點(diǎn)O一共有( 。
A. 4B. 5C. 6D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三點(diǎn)A(2,4)、B(3,5)、P(a,a),將線段AB繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到CD,其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D;
(1)當(dāng)a=2時(shí),
①在圖中畫(huà)出線段CD,保留作圖痕跡,并直接寫(xiě)出C、D兩點(diǎn)的坐標(biāo);
②將線段CD向上平移m個(gè)單位,點(diǎn)C、D恰好同時(shí)落在反比例函數(shù)y=的圖象上,求m和k的值.
(2)若a=4,將函數(shù)y=(x>0)的圖象繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到新圖象,直線AB與新圖象的交點(diǎn)為E、F,則EF的長(zhǎng)為 .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某五金商店準(zhǔn)備從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件進(jìn)行銷(xiāo)售.若每個(gè)甲種零件的進(jìn)價(jià)比每個(gè)乙種零件的進(jìn)價(jià)少2元,且用900元正好可以購(gòu)進(jìn)50個(gè)甲種零件和50個(gè)乙種零件.
(1)求每個(gè)甲種零件、每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)若該五金商店本次購(gòu)進(jìn)甲種零件的數(shù)量比購(gòu)進(jìn)乙種零件的數(shù)量的3倍還少5個(gè),購(gòu)進(jìn)兩種零件的總數(shù)量不超過(guò)95個(gè),該五金商店每個(gè)甲種零件的銷(xiāo)售價(jià)格為12元,每個(gè)乙種零件的銷(xiāo)售價(jià)格為15元,則將本次購(gòu)進(jìn)的甲、乙兩種零件全部售出后,可使銷(xiāo)售兩種零件的總利潤(rùn)(利潤(rùn)=售價(jià)-進(jìn)價(jià))超過(guò)371元,通過(guò)計(jì)算求出該五金商店本次從機(jī)械廠購(gòu)進(jìn)甲、乙兩種零件有哪幾種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com