【題目】如圖,在平行四邊形ABCD中,AE平分∠BADBC于點(diǎn)E.

(1)作CF平分∠BCDAD于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法);

(2)在(1)的條件下,求證:△ABE≌△CDF.

【答案】見(jiàn)解析

【解析】

(1)以點(diǎn)C為圓心,任意長(zhǎng)為半徑畫(huà)弧,交CD,BC于兩點(diǎn),分別以這兩點(diǎn)為圓心,大于這兩點(diǎn)距離的一半為半徑畫(huà)弧,在平行四邊形內(nèi)交于一點(diǎn),過(guò)點(diǎn)C以及這個(gè)交點(diǎn)作射線,交AD于點(diǎn)F即可;

(2)根據(jù)ASA即可證明:ABE≌△CDF.

1)如圖所示:CF即為所求作的;

(2)∵四邊形ABCD是平行四邊形,

AB=CD,B=D,BAD=BCD,

AE平分∠BAD,CF平分∠BCD,

∴∠BAE=DCF,

ABECDF

∴△ABE≌△CDF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程

求證:不論為任何實(shí)數(shù),此方程總有實(shí)數(shù)根;

若方程有兩個(gè)不同的整數(shù)根,且為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E,CBF上,,

求證:;

ACDEM,且,,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)到AB上的G處,求旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=120°,將菱形沿EF折疊,點(diǎn)B正好落在AD邊的點(diǎn)G處,且EG⊥AC,若CD=8,則FG的長(zhǎng)為(
A.4
B.4
C.4
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線 OC,使BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OBCOE= °;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置OE恰好平分AOC,請(qǐng)說(shuō)明OD所在射線是BOC的平分線;

(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好COD= AOE,BOD的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列分式方程:

(1);

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明去文具用品商店給同學(xué)買(mǎi)某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標(biāo)價(jià)都是2/支,但甲、乙兩商店的優(yōu)惠條件卻不同.

甲商店:若購(gòu)買(mǎi)不超過(guò)10支,則按標(biāo)價(jià)付款;若一次購(gòu)10支以上,則超過(guò)10支的部分按標(biāo)價(jià)的60%付款. 乙商店:按標(biāo)價(jià)的80%付款.

在水性筆的質(zhì)量等因素相同的條件下.

(1)設(shè)小明要購(gòu)買(mǎi)的該品牌筆數(shù)是x(x>10)支,請(qǐng)用含x的式子分別表示在甲、乙兩個(gè)商店購(gòu)買(mǎi)該品牌筆買(mǎi)水性筆的費(fèi)用.

(2)若小明要購(gòu)買(mǎi)該品牌筆30支,你認(rèn)為在甲、乙兩商店中,到哪個(gè)商店購(gòu)買(mǎi)比較省錢(qián)?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若△ABC和△ADE為等邊三角形,M,N分別EB,CD的中點(diǎn),易證:CD=BE,△AMN是等邊三角形.

(1)當(dāng)把△ADE繞A點(diǎn)旋轉(zhuǎn)到圖2的位置時(shí),CD=BE是否仍然成立?若成立請(qǐng)證明,若不成立請(qǐng)說(shuō)明理由;

(2)當(dāng)△ADE繞A點(diǎn)旋轉(zhuǎn)到圖3的位置時(shí),△AMN是否還是等邊三角形?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上午8時(shí),一條船從海島A出發(fā),以15海里/時(shí)的速度向正北航行,10時(shí)到達(dá)海島B處,從A、B望燈塔C,測(cè)得∠BAC=60°,點(diǎn)C在點(diǎn)B的正西方向,海島B與燈塔C之間的距離是_____海里.

查看答案和解析>>

同步練習(xí)冊(cè)答案