【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是(  )

A.88°
B.92°
C.106°
D.136°

【答案】D
【解析】解:∵∠BOD=88°,
∴∠BAD=88°÷2=44°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°﹣44°=136°,
即∠BCD的度數(shù)是136°.
故選:D.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用圓周角定理和圓內(nèi)接四邊形的性質(zhì),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正確的結(jié)論有( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某風(fēng)景區(qū)門票價(jià)格如圖所示,百姓旅行社有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在“五一”小黃金周期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為120人,乙團(tuán)隊(duì)人數(shù)不超過(guò)50人.設(shè)甲團(tuán)隊(duì)人數(shù)為x人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍;
(2)若甲團(tuán)隊(duì)人數(shù)不超過(guò)100人,請(qǐng)說(shuō)明甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間小明和小亮玩“剪刀、石頭、布”游戲.游戲規(guī)則是:雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢(shì)中的一種,石頭勝剪刀,剪刀勝布,布勝石頭,若雙方出現(xiàn)相同手勢(shì),則算打平.若小亮和小明兩人只比賽一局.
(1)請(qǐng)用樹狀圖或列表法列出游戲的所有可能結(jié)果.
(2)求出雙方打平的概率.
(3)游戲公平嗎?如果不公平,你認(rèn)為對(duì)誰(shuí)有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AD平分∠CAB,過(guò)點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于點(diǎn)E,與AB的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:EF與⊙O相切;
(2)若AB=6,AD=4 ,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)活動(dòng)小組要測(cè)量樓AB的高度,樓AB在太陽(yáng)光的照射下在水平面的影長(zhǎng)BC為6米,在斜坡CE的影長(zhǎng)CD為13米,身高1.5米的小紅在水平面上的影長(zhǎng)為1.35米,斜坡CE的坡度為1:2.4,求樓AB的高度.(坡度為鉛直高度與水平寬度的比)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=﹣x+6,交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+mx+n經(jīng)過(guò)A點(diǎn),且與直線y=﹣x+6交于另一點(diǎn)P.
(1)若P與B點(diǎn)重合,求拋物線的解析式;
(2)若P在第一象限,過(guò)PE⊥x軸于E點(diǎn),PF⊥y軸于F點(diǎn),當(dāng)四邊形PEOF面積為5,求拋物線的解析式;
(3)若△OAP為等腰三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),且BC=EC,CF⊥BE交AB于點(diǎn)F,P是EB延長(zhǎng)線上一點(diǎn),下列結(jié)論: ①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,
其中正確結(jié)論的個(gè)數(shù)為(

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案