【題目】如圖是放在地面上的一個長方體盒子,其中AB18cm,BC12cmBF10cm,點M在棱AB上,且AM6cm,點NFG的中點,一只螞蟻要沿著長方體盒子的表面從點M爬行到點N,它需要爬行的最短路程為( 。

A.20cmB.2cmC.12+2cmD.18cm

【答案】A

【解析】

平面展開圖有兩種情況,畫出圖形利用勾股定理求出MN的長即可.

解:如圖1

AB18cm,BCGF12cm,BF10cm,點NFG的中點,

BM18612 cm,BN10+616 cm,

MN20 cm

如圖2,

AB18cm,BCGF12cm,BF10cm,點NFG的中點,

PM186+618 cm,NP10 cm,

MN2 cm

202,

∴螞蟻需要爬行的最短路程為20 cm

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,請回答下列問題

材料一:我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了三斜求積術(shù),即已知三角形的三邊長,求它的面積.用現(xiàn)代式子表示即為:S①(其中a,b,c為三角形的三邊長,S為面積)而另一個文明古國古希臘也有求三角形面積的海倫公式;S……②(其中p

材料二:對于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2,

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三邊長分別為3、4、5,請試分別運用公式①和公式②,計算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請試試.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張如圖1的長為a,寬為bab)的小長方形紙片,按圖2的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示.當(dāng)BC的長度變化時,按照同樣的放置方式,左上角與右下角的陰影部分的面積的差S始終保持不變,則a,b滿足的關(guān)系是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(-1,0),(30).對于下列命題:①b-2a=0;abc0;a-2b+4c08a+c0.其中正確的有____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級準(zhǔn)備購買一批筆記本獎勵優(yōu)秀學(xué)生,在購買時發(fā)現(xiàn),每本筆記本可以打九折,用360元錢購買的筆記本,打折后購買的數(shù)量比打折前多10本.

1)求打折前每本筆記本的售價是多少元?

2)由于考慮學(xué)生的需求不同,學(xué)校決定購買筆記本和筆袋共90件,筆袋每個原售價為6元,兩種物品都打九折,若購買總金額不低于360元,且不超過365元,問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,有一點PAC上移動.若ABAC5,BC6,AP+BP+CP的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,已知ABC為等邊三角形,動點D在邊AC上,動點P在邊BC上,若這兩點分別從C、B點同時出發(fā),以相同的速度由CA和由BC運動,連結(jié)AP、BD交于Q,兩點運動的過程中,APBD成立嗎?請證明你的結(jié)論.

2)如果把原題中的動點D在邊AC上,動點P在邊BC上,改為:動點D在射線CA上、動點P在射線BC上運動,其他條件不變,如圖2所示,APBD還成立嗎?說明理由,并求出∠BQP的大。

3)如果把原題中的動點P在邊BC,改為動點P在射線AB上運動,連結(jié)DPBCE,其他條件不變,如圖3,則動點D、P在運動過程中,請你寫出DEPE的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:BFABC的外角∠ABE的平分線,DBF上一點,且ADCD.

1)如圖1,過點DDHCE于點H,若AB8,BC6,求BH的長.

2)如圖2,若∠ABC24°,∠ABD78°,∠BAD60°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+b與反比例函數(shù)y=(k≠0)的圖象相交于點P,則關(guān)于x的方程﹣x+b=的解是_____

查看答案和解析>>

同步練習(xí)冊答案