【題目】如圖所示,在平面直角坐標系中,平行四邊形ABCD的頂點AD的坐標分別是(0,0),(23),AB=5,則頂點C的坐標是( )

A. (3,7)B. (5,3)C. (7,3)D. (8,2)

【答案】C

【解析】

分別過點D,點C作垂線垂直于x軸于E,F,如解析中的圖所示,證明三角形ADE與三角形BCF全等,得到BF的值,則點C的橫坐標的值即為AB+BF=AF的長度.又因為DCAB,所以點C的縱坐標與D的縱坐標相等.

如圖所示:過點D,C分別作x軸的垂線于點E,F

∵四邊形ABCD是平行四邊形

AD=BC,

AE=BF

AE是點D橫坐標的值,AE=2

AF=AB+BF=7

∴點C的橫坐標的值為7

∵ DCAB

∴點C的縱坐標的值等于點D縱坐標的值,即為3

C的坐標為(7,3

故答案為C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,已知直線ab,A在直線a,B. C在直線b,P在線段AB,1=70,2=100,求∠PCB的度數(shù).

2)下表是某商行一種商品的銷售情況,該商品原價為560元,隨著不同幅度的降價(單位:元),日銷量(單位:件)發(fā)生相應變化如下表:

降價(元)

5

10

15

20

25

30

35

日銷量(件)

78

81

84

87

90

93

96

①根據(jù)表格所列出的變化關系,請你估計降價之前的日銷量是多少件?

②根據(jù)表格所列出的變化關系,請直接寫出的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,點是射線上一動點(與點不重合),分別平分,分別交射線于點.

1)求的度數(shù);

2)當點運動時,之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.

3)當點運動到使時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,正比例函數(shù)yax的圖象與反比例函數(shù)y的圖象交于點A(3,2)

(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達式;

(2)根據(jù)圖象回答,在第一象限內(nèi),當x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?

(3)點Mmn)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點M作直線MBx軸,交y軸于點B;過點A作直線ACy軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BMDM的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩城市之間開通了動車組高速列車。已知每隔2h有一列速度相同的動車組列車從甲城開往乙城。如圖,OA是第一列動車組列車離開甲城的路程s(km)與運行時間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運行時間t(h)的函數(shù)圖象。請根據(jù)圖中的信息,解答下列問題:

(1)從圖象看,普通快車發(fā)車時間比第一列動車組列車發(fā)車時間___1h(”),點B的縱坐標600的實際意義是___;

(2)請直接在圖中畫出第二列動車組列車離開甲城的路程s(km)與時間t(h)的函數(shù)圖象;

(3)若普通快車的速度為100km/h,

①求BC的表達式,并寫出自變量的取值范圍;

②第二列動車組列車出發(fā)多長時間后與普通快車相遇?

③請直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動車組列車相遇的時間間隔.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】微商小明投資銷售一種進價為每條元的圍巾.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(元)之間的關系可近似的看作一次函數(shù) 銷售過程中銷售單價不低于成本價,而每條的利潤不高于成本價的

)設小明每月獲得利潤為(元),求每月獲得利潤(元)與銷售單價(元)之間的函數(shù)關系式并確定自變量的取值范圍

)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

)如果小明想要每月獲得的利潤不低于,那么小明每月的成本最少需要多少元?(成本進價銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)和形是數(shù)學的兩個主要研究對象,我們經(jīng)常運用數(shù)形結合、數(shù)形轉化的方法解決一些數(shù)學問題.下面我們來探究由數(shù)思形,以形助數(shù)的方法在解決代數(shù)問題中的應用.

探究一:求不等式|x1|2的解集

1)探究|x1|的幾何意義

如圖①,在以O為原點的數(shù)軸上,設點A對應的數(shù)是x1,有絕對值的定義可知,點A與點O的距離為

|x1|,可記為AO=|x1|.將線段AO向右平移1個單位得到線段AB,此時點A對應的數(shù)是x,點B對應的數(shù)是1.因為AB=AO,所以AB=|x1|,因此,|x1|的幾何意義可以理解為數(shù)軸上x所對應的點A1所對應的點B之間的距離AB

2)求方程|x1|=2的解

因為數(shù)軸上3和﹣1所對應的點與1所對應的點之間的距離都為2,所以方程的解為3,﹣1

3)求不等式|x1|2的解集

因為|x1|表示數(shù)軸上x所對應的點與1所對應的點之間的距離,所以求不等式解集就轉化為求這個距離小于2的點對應的數(shù)x的范圍.請寫出這個解集:_________________________________

探究二:探究的幾何意義

1)探究的幾何意義

如圖③,在直角坐標系中,設點M的坐標為(xy),過MMPx軸于P,作MQy軸于Q,則P點坐標為(x0),Q點坐標為(0,y),OP=|x|,OQ=|y|,在RtOPM中,PM=OQ=|y|,則,因此,的幾何意義可以理解為點Mx,y)與點O00)之間的距離MO

2)探究的幾何意義

如圖④,在直角坐標系中,設點A的坐標為(x1,y5),由探究二(1)可知,,將線段AO先向右平移1個單位,再向上平移5個單位,得到線段AB,此時點A的坐標為(x,y),點B的坐標為(15),因為AB=AO,所以,因此的幾何意義可以理解為點Axy)與點B1,5)之間的距離AB

3)探究的幾何意義,根據(jù)探究二(2)所得的結論,請寫出的幾何意義可以理解為:________________

4的幾何意義可以理解為:________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家蔬菜公司收購到某種綠色蔬菜200噸,準備加工后進行銷售,銷售后獲利的情況如下表所示:

銷售方式

粗加工后銷售

精加工后銷售

每噸獲利(元)

500

800

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.

1)如果要求20天剛好加工完200噸蔬菜,則公司應安排幾天精加工,幾天粗加工?

2)如果先進行精加工,然后進行粗加工.

①試求出銷售利潤W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關系式;

②若要求在不超過16天的時間內(nèi),將200噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉,得到矩形AEFG,E點正好落在邊CD上,連接BE,BG,且BGAEP.

1)求證:CBE=BAE;

(2)求證:PG=PB;

3)若AB=,BC=3求出BG的長.

查看答案和解析>>

同步練習冊答案