【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C(0,),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側(cè)

(1)求a的值及點A,B的坐標(biāo);

(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達(dá)式;

(3)當(dāng)點P位于第二象限時,設(shè)PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標(biāo);若不能,請說明理由

【答案】(1),A(-4,0),B(2,0);(2)y=2x+2或;(3)存在,N(- 1)

【解析】

試題分析:(1)把點C代入拋物線解析式即可求出a,令y=0,列方程即可求出點A、B坐標(biāo).

(2)先求出四邊形ABCD面積,分兩種情形:①當(dāng)直線l邊AD相交與點M1時,根據(jù)SAHM1×10=3,求出點M1坐標(biāo)即可解決問題.②當(dāng)直線l邊BC相交與點M2時,同理可得點M2坐標(biāo).

(3)設(shè)P()、Q(,且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,得到b=k,利用方程組求出點M坐標(biāo),求出直線DN解析式,再利用方程組求出點N坐標(biāo),列出方程求出k,即可解決問題.

試題解析:(1)∵拋物線與y軸交于點C(0,),a﹣3=,解得:,∴

當(dāng)y=0時,有, ,,∴A(﹣4,0),B(2,0).

(2)∵A(﹣4,0),B(2,0),C(0,),D(﹣1,﹣3)

∴S四邊形ABCD=S△ADH+S梯形OCDH+S△BOC==10.

從面積分析知,直線l只能與邊AD或BC相交,所以有兩種情況:

①當(dāng)直線l邊AD相交與點M1時,則SAHM1×10=3,∴×3×(-yM1)=3,yM1=-2,點M1(﹣2,﹣2),過點H(﹣1,0)和M1(﹣2,﹣2)的直線l的解析式為y=2x+2.

②當(dāng)直線l邊BC相交與點M2時,同理可得點M2,﹣2),過點H(﹣1,0)和M2(,﹣2)的直線l的解析式為

綜上所述:直線l的函數(shù)表達(dá)式為y=2x+2或

(3)設(shè)P(,)、Q(,且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.

,∴,,,∵點M是線段PQ的中點,∴由中點坐標(biāo)公式的點M(,

假設(shè)存在這樣的N點如圖,直線DN∥PQ,設(shè)直線DN的解析式為y=kx+k﹣3,,解得: , N(,).

∵四邊形DMPN是菱形,∴DN=DM,∴,整理得:,, >0,,解得,∵k<0,∴,∴P(-6),M(-,2),N(-, 1),PM=DN=,∵PM∥DN,∴四邊形DMPN是平行四邊形,∵DM=DN,∴四邊形DMPN為菱形,∴以DP為對角線的四邊形DMPN能成為菱形,此時點N的坐標(biāo)為(﹣,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2﹣2x+3的頂點坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是長方形(長方形對邊相等且平行,四個角為直角),

1用直尺和圓規(guī)在邊CD上找一個點P,使ADP沿著直線AP翻折后D點正好落在BC邊上的Q點(不寫作法,保留作圖痕跡).連結(jié)AP,AQ,PQ

2在(1)中作的新圖形中,已知AB=5,AD=13,CP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明買了80分和2元的郵票共16枚,花了188角,若設(shè)他買了80分的郵票x枚,則可列方程(

A. 80x+2(16–x)=188 B. 80x+2(16–x)=18.8

C. 0.8x+2(16–x)=18.8 D. 8x+2(16–x)=188

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線l與拋物線相交于A(1,),B(4,0)兩點

(1)求出拋物線的解析式;

(2)在坐標(biāo)軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;

(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】424日是中國航天日.1970年的這一天,我國自行設(shè)計、制造的第一顆人造地球衛(wèi)星“東方紅一號”成功發(fā)射,標(biāo)志著中國從此進(jìn)入了太空時代,它的運(yùn)行軌道,距地球最近點439000米,將439000用科學(xué)記數(shù)法表示應(yīng)為(  )

A.0.439×106B.4.39×106C.4.39×105D.439×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要判斷一個四邊形門框是否為矩形,在下面四個擬定方案中,正確的方案是( 。

A.測量對角線是否相互平分

B.測量兩組對邊是否分別相等

C.測量對角線是否互相垂直

D.測量其中三個角是否是直角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市今年參加中考的學(xué)生人數(shù)大約為3.75×104人,這個用科學(xué)記數(shù)法表示的近似數(shù)精確到______位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。

A.x2x3x6B.2a+3b5abC.2a236a6D.a4+2a43a4

查看答案和解析>>

同步練習(xí)冊答案