【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點(diǎn)A1 , 得∠A1;∠A1BC和∠A1CD的平分線交于點(diǎn)A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分線交于點(diǎn)A2017 , 則∠A2017=°.

【答案】
【解析】解:∵A1B平分∠ABC,A1C平分∠ACD, ∴∠A1BC= ∠ABC,∠A1CA= ∠ACD,
∵∠A1CD=∠A1+∠A1BC,
∠ACD=∠A1+ ∠ABC,
∴∠A1= (∠ACD﹣∠ABC),
∵∠A+∠ABC=∠ACD,
∴∠A=∠ACD﹣∠ABC,
∴∠A1= ∠A,
∠A2= ∠A1= ∠A,…,
以此類推可知∠A2017= ∠A=( )°,
故答案為:
利用角平分線的性質(zhì)、三角形外角性質(zhì),易證∠A1= ∠A,進(jìn)而可求∠A1 , 由于∠A1= ∠A,∠A2= ∠A1= ∠A,…,以此類推可知∠A2017即可求得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O和x軸上另一點(diǎn)A,它的對稱軸x=2與x軸交于點(diǎn)C,直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m),且與y軸、直線x=2分別交于點(diǎn)D、E.

(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)判斷直線BE與拋物線交點(diǎn)的個數(shù);
(3)求證:CD垂直平分BE;
(4)若P是該拋物線上的一個動點(diǎn),是否存在這樣的點(diǎn)P,使得△PBE是等腰直角三角形,且∠PEB=90°?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動點(diǎn)P,Q同時從點(diǎn)B出發(fā),點(diǎn)P沿折線BE﹣ED﹣DC運(yùn)動到點(diǎn)C時停止,點(diǎn)Q沿BC運(yùn)動到點(diǎn)C時停止,它們運(yùn)動的速度都是1cm/秒.設(shè)P、Q同時出發(fā)t秒時,△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5;② ;③當(dāng)0<t≤5時, ;④當(dāng) 秒時,△ABE∽△QBP;其中正確的結(jié)論是( )

A.①②③
B.②③
C.①③④
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的最小整數(shù)解為方程的解,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知經(jīng)過原點(diǎn)的拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=﹣1,下列結(jié)論中: ①ab>0,②a+b+c>0,③當(dāng)﹣2<x<0時,y<0.
正確的個數(shù)是(

A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x分

頻數(shù)(人數(shù))

第1組

25≤x<30

4

第2組

30≤x<35

8

第3組

35≤x<40

16

第4組

40≤x<45

a

第5組

45≤x<50

10


請結(jié)合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)優(yōu)秀傳統(tǒng)文化進(jìn)校園,某校計(jì)劃購進(jìn)“四書”、“五經(jīng)”兩套圖書供學(xué)生借閱,已知這兩套圖書單價和為660元,一套“四書”比一套“五經(jīng)”的2倍少60元.

(1)分別求出這兩套圖書的單價;

(2)該校購買這兩套圖書不超過30600元,且購進(jìn)“四書”至少33套,“五經(jīng)”的套數(shù)是“四書”套數(shù)的2倍,該校共有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某班參加課外活動的總共有30人,跳繩的人數(shù)占30%,表示踢毽的扇形圓心角是60°,踢毽和打籃球的人數(shù)比是1:2,那么參加其它活動的人數(shù)有________人.

查看答案和解析>>

同步練習(xí)冊答案