【題目】已知:點和是一次函數(shù)與反比例函數(shù)圖象的連個不同交點,點關(guān)于軸的對稱點為,直線以及分別與軸交于點和.
(1)求反比例函數(shù)的表達(dá)式;
(2)若,求的取值范圍.
【答案】(1);(2) 或.
【解析】
(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m的值;
(2)分兩種情況討論:當(dāng)P在第一象限或第三象限時,過點作于點,交x軸于點, ,通過相似的性質(zhì)求出AC的長,然后求出點P的坐標(biāo),求出一次函數(shù)的解析式,即可求出k的取值范圍.
解:(1)將點A(-1,-4)代入反比例函數(shù)解析式,即可得m=4,
∴反比例函數(shù)解析式是;
(2)分兩種情況討論:當(dāng)P在第一象限時,如圖1,當(dāng)時,過點作于點,交x軸于點,
∵,
∴,,
∴,
∴AC=6,
∴點P的縱坐標(biāo)是2,
把y=2代入中得x=2,
∴點P的坐標(biāo)是(2,2),
∴,
∴,
∴一次函數(shù)的解析式為y=2x-2,
當(dāng)時,AC>6,此時點P的縱坐標(biāo)大于2,k的值變大,所以k>2,
∴;
當(dāng)P在第三象限時,如圖2,當(dāng)時,過點作于點,交x軸于點,
∵,
∴,,
∴,
∴AC=6,
∴點P的縱坐標(biāo)是-10,
把y=-10代入中得x= ,
∴點P的坐標(biāo)是(,-10),
∴,
∴,
∴一次函數(shù)的解析式為y=-10x-14,
當(dāng)時,AC>6,此時點P的縱坐標(biāo)小于-10,k的值變小,所以k<-10,
∴;
綜上所述,的取值范圍或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸是x=﹣1,與x軸的一個交點為(﹣5,0),則不等式ax2+bx+c>0的解集為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,弦BC=2,點A是優(yōu)弧BC上一動點(不包括端點),△ABC的高BD、CE相交于點F,連結(jié)ED.下列四個結(jié)論:
①∠A始終為60°;
②當(dāng)∠ABC=45°時,AE=EF;
③當(dāng)△ABC為銳角三角形時,ED=;
④線段ED的垂直平分線必平分弦BC.
其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,,點從點出發(fā)向點移動,速度為每秒1個單位長度,點從點出發(fā)向點移動,速度為每秒2個單位長度. 兩點同時出發(fā),且其中的任何一點到達(dá)終點后,另一點的移動同時停止.
(1)若兩點的運動時間為,當(dāng)為何值時,?
(2)在(1)的情況下,猜想與的位置關(guān)系并證明你的結(jié)論.
(3)①如圖2,當(dāng)時,其他條件不變,若(2)中的結(jié)論仍成立,則_________.
②當(dāng),時,其他條件不變,若(2)中的結(jié)論仍成立,則_________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,是等邊三角形,AP、BP的延長線分別交邊CD于點E、F,聯(lián)結(jié)AC、CP、AC與BF相交于點H,下列結(jié)論中錯誤的是( )
A.AE=2DEB.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組的學(xué)生進(jìn)行社會實踐活動時,想利用所學(xué)的解直角三角形的知識測量教學(xué)樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達(dá)點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD為1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,AD平分∠BAC,點G是BA延長線上一點,點F是AC上一點,AG=AF,連接GF并延長交BC于E.
(1)若∠B=55°,求∠AFG的度數(shù);
(2)求證:GE⊥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=表示,且拋物線上的點C到OB的水平距離為3m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com