【題目】某書報亭開設兩種租書方式:一種是零星租書,每冊收費1元;另一種是會員卡租書,辦卡費每月12元,租書費每冊0.4.小軍經(jīng)常來該店租書,若每月租書數(shù)量為x.

1)寫出零星租書方式應付金額(元)與租書數(shù)量x(冊)之間的函數(shù)關系式。

2)寫出會員卡租書方式應付金額(元)與租書數(shù)量x(冊)之間的函數(shù)關系式.

3)小軍選取哪種租書方式更合算?

【答案】見解析.

【解析】

(1)因為零星租書每冊收費1元,所以y1x是相等的關系;
(2)會員卡租書,每冊是0.4元,x冊的費用就是0.4x,加上辦卡費12元,所以y2=12+0.4x;
(3)比較兩種租書方式哪種花的費用最少就哪種方式更合算.

(1)∵零星租書每冊收費1元,
∴應付金額與租書數(shù)量之間的函數(shù)關系式為:y1=x;
(2)∵在會員卡租書中,租書費每冊0.4元,x冊就是0.4x元,加上辦卡費12元,
∴應付金額與租書數(shù)量之間的函數(shù)關系式為:y2=0.4x+12;
(3)當y1=y2時,x=12+0.4x,解得:x=20
y1>y2時,x>12+0.4x,解得x>20
y1<y2時,x<12+0.4x,解得x<20
綜上所述,當小軍每月借書少于20冊時,采用零星方式租書合算;當每月租書20冊時,兩種方式費用一樣;當每月租書多于20冊時,采用會員租書的方式更合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知三角形紙片,將紙片折疊,使點與點重合,折痕分別與邊交于點

1)畫出直線

2)若點關于直線的對稱點為點,請畫出點;

3)在(2)的條件下,聯(lián)結(jié),如果的面積為2,的面積為,那么的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AOB=α°,∠CODAOB內(nèi)部且COD=β°.

(1)α,β滿足|α-2β|+(β-60)2=0,則①α= ;

②試通過計算說明AODCOB有何特殊關系;

(2)(1)的條件下,如果作OE平分BOC,請求出AOCDOE的數(shù)量關系;

(3)α°,β°互補,作AOC,∠DOB的平分線OMON,試判斷OMON的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為坐標原點,點B的坐標為(4,3),點A,C在坐標軸上,點PBC邊上,直線ι1:y=2x+3,直線ι2y=2x-3

(1)求直線l1x軸的交點坐標T,直線ι2AB的交點坐標Q和與x軸的交點坐標G;

(2)判定四邊形ATGQ的形狀并求它的面積;

3)已知點M在第一象限,且是直線l2上的點,若ΔAPM是等腰直角三角形,求點M坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量山坡上一棵樹PQ的高度,小明在點A處利用測角儀測得樹頂P的仰角為450 ,然后他沿著正對樹PQ的方向前進10m到達B點處,此時測得樹頂P和樹底Q的仰角分別是600300,設PQ垂直于AB,且垂足為C.

(1)求∠BPQ的度數(shù);

(2)求樹PQ的高度(結(jié)果精確到0.1m,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201923日至2019220日,第一屆成都金沙太陽節(jié)在金沙遺址博物館成功舉辦,用世界文明展覽,主題燈展,園林花藝,美食演繹等一系列文化活動,與瑪雅這一著名的中美洲文明結(jié)下不解之緣,為成都人打造了一個博物館里的文化年”.春節(jié)當天,小杰于下午點乘車從家出發(fā),當天按原路返回.如圖,是小杰出行的過程中,他距家的距離(千米)與他離家的時間(小時)之間的圖像.根據(jù)圖像,完成下面的問題:

1)小杰家距金沙遺址博物館 千米,他乘車去金沙遺址博物館的速度是 千米/小時;

2)已知晚上點時,小杰距家千米,請通過計算說明他何時才能回到家?

3)請直接寫出小杰回家過程中的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長均為1,每個小方格的頂點叫格點

1)畫出ABCAB邊上的中線CD;

2)畫出ABC向右平移4個單位后得到的A1B1C1;

3)圖中ACA1C1的關系是:______;

4SABC的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在數(shù)軸上的位置如圖所示,所對應的點分別為

1)在數(shù)軸上表示的點與表示的點之間的距離為 ;由此可得點之間的距離為

2)化簡:

3)若的倒數(shù)是它本身,的絕對值的相反數(shù)是,是數(shù)軸上表示的一點,且,求所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:在數(shù)軸上表示兩個數(shù)的點之間的距離可以表示為,比如表示3的點與-2的點之間的距離表示為可以表示數(shù)的點與表示數(shù)1的點之間的距離與表示數(shù)的點與表示數(shù)-2的點之間的距離的和,根據(jù)上述材料,回答下列問題:

1)解方程

2的最小值是

3的最小值是 此時的值為

拓展推廣:如圖所示:當表示數(shù)的點在點和點之間(包含點和點)時,表示數(shù)的點與點的距離與表示數(shù)的點和點的距離之和最小,且最小值為3,即的最小值是3,且此時的取值范圍為

4)已知數(shù)滿足的最小值是 最大值是

5)當的最小值是4.5時,求出的值及對應的值或取值范圍.

查看答案和解析>>

同步練習冊答案